PCA → GEE → Mortality Forecasting¶

Pipeline:

  1. Load data
  2. Build PCA-based features (no centering/scaling)
  3. Construct training frame and visualize PC1 over time
  4. Fit GEE models (Exchangeable and AR(1))
  5. Compare models via an approximate QIC
  6. Forecast PC1 via ARIMA(0,1,0) with drift and evaluate on the test set
  7. Plot predicted vs observed and groupwise MSE

Notes

  • Expects dat.csv and dattrn.csv in the working directory.

1. Setup & Imports¶

In [13]:
import warnings
warnings.filterwarnings("ignore")

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns

import statsmodels.api as sm
from statsmodels.genmod.generalized_estimating_equations import GEE
from statsmodels.genmod.families import Gaussian
from statsmodels.genmod.cov_struct import Exchangeable, Autoregressive
from numpy.linalg import svd
from statsmodels.tsa.arima.model import ARIMA  

# For reproducibility where stochastic procedures are involved
np.random.seed(42)

2. Load Data¶

In [14]:
# === Load data ===
import os

dat_path = "dat.csv"
dattrn_path = "dattrn.csv"

for p in [dat_path, dattrn_path]:
    if not os.path.exists(p):
        raise FileNotFoundError(f"Required file not found: {p}")

dat = pd.read_csv(dat_path, index_col=0)
dattrn = pd.read_csv(dattrn_path, index_col=0)

print("dat shape:", dat.shape)
print("dattrn shape:", dattrn.shape)
print("\nFirst few rows of dat:")
display(dat.head())
print("\nFirst few rows of dattrn:")
display(dattrn.head())

# Copies for training/test split
M0 = dat.copy()
M  = dattrn.copy()

t_train = 20  # number of training years (1991–2010)
dat shape: (31, 364)
dattrn shape: (20, 364)

First few rows of dat:
0 1 2 3 4 5 6 7 8 9 ... 81.3 82.3 83.3 84.3 85.3 86.3 87.3 88.3 89.3 90.3
1991 -5.007169 -7.562114 -7.604435 -8.296220 -9.300894 -8.292877 -9.093741 -9.609157 -8.789093 -8.962863 ... -1.899997 -1.874836 -1.681704 -1.621221 -1.564971 -1.457627 -1.363319 -1.311694 -1.264750 -1.125200
1992 -5.033727 -7.474224 -8.072629 -7.621064 -8.406935 -8.622114 -9.316603 -8.635369 -10.027536 -8.954132 ... -1.981041 -1.859571 -1.811526 -1.707015 -1.589413 -1.524062 -1.405809 -1.357191 -1.188386 -1.151491
1993 -5.184065 -7.343906 -8.662821 -8.525223 -8.526250 -8.234131 -8.629759 -9.100282 -8.931456 -8.532358 ... -2.011899 -1.876370 -1.810375 -1.740609 -1.665486 -1.521295 -1.415825 -1.337151 -1.349108 -1.124594
1994 -5.196172 -7.613723 -7.754131 -8.261900 -9.341846 -9.341712 -9.334660 -8.918423 -8.919920 -8.647573 ... -2.091890 -1.894156 -1.830218 -1.773546 -1.679335 -1.541609 -1.471148 -1.332995 -1.342733 -1.207652
1995 -5.332980 -7.958452 -7.919381 -8.451418 -8.959733 -9.633387 -8.784101 -9.111060 -9.325247 -9.615271 ... -1.968672 -1.933890 -1.793853 -1.756636 -1.657951 -1.563924 -1.414335 -1.334577 -1.248962 -1.242920

5 rows × 364 columns

First few rows of dattrn:
0 1 2 3 4 5 6 7 8 9 ... 81.3 82.3 83.3 84.3 85.3 86.3 87.3 88.3 89.3 90.3
1991 -5.007169 -7.562114 -7.604435 -8.296220 -9.300894 -8.292877 -9.093741 -9.609157 -8.789093 -8.962863 ... -1.899997 -1.874836 -1.681704 -1.621221 -1.564971 -1.457627 -1.363319 -1.311694 -1.264750 -1.125200
1992 -5.033727 -7.474224 -8.072629 -7.621064 -8.406935 -8.622114 -9.316603 -8.635369 -10.027536 -8.954132 ... -1.981041 -1.859571 -1.811526 -1.707015 -1.589413 -1.524062 -1.405809 -1.357191 -1.188386 -1.151491
1993 -5.184065 -7.343906 -8.662821 -8.525223 -8.526250 -8.234131 -8.629759 -9.100282 -8.931456 -8.532358 ... -2.011899 -1.876370 -1.810375 -1.740609 -1.665486 -1.521295 -1.415825 -1.337151 -1.349108 -1.124594
1994 -5.196172 -7.613723 -7.754131 -8.261900 -9.341846 -9.341712 -9.334660 -8.918423 -8.919920 -8.647573 ... -2.091890 -1.894156 -1.830218 -1.773546 -1.679335 -1.541609 -1.471148 -1.332995 -1.342733 -1.207652
1995 -5.332980 -7.958452 -7.919381 -8.451418 -8.959733 -9.633387 -8.784101 -9.111060 -9.325247 -9.615271 ... -1.968672 -1.933890 -1.793853 -1.756636 -1.657951 -1.563924 -1.414335 -1.334577 -1.248962 -1.242920

5 rows × 364 columns

3. PCA Feature (no centering/scaling)¶

In [15]:
def pca_no_center_scale(X: np.ndarray) -> np.ndarray:
    """
    First principal component scores WITHOUT centering/scaling.
    Returns raw scores (U[:,0] * S[0]).
    """
    U, S, Vt = svd(X, full_matrices=False)
    return U[:, 0] * S[0]

4. Build kc1/kc2 for Training¶

In [16]:
# Split dattrn into 4 matrices of 91 columns each
M_blocks = [dattrn.iloc[:, i*91:(i+1)*91] for i in range(4)]

kc_list = []
for i in [0, 2]:  
    m1 = M_blocks[i].to_numpy()
    m2 = M_blocks[i + 1].to_numpy()

    # PC1 on subgroups (15 / 26 / 50) across paired blocks, repeat scores
    result1 = np.tile(pca_no_center_scale(np.hstack((m1[:, 0:15],  m2[:, 0:15]))), 15)
    result2 = np.tile(pca_no_center_scale(np.hstack((m1[:, 15:41], m2[:, 15:41]))), 26)
    result3 = np.tile(pca_no_center_scale(np.hstack((m1[:, 41:91], m2[:, 41:91]))), 50)

    combined_results = np.concatenate([result1, result2, result3])
    # Repeat combined results twice 
    kc_list.append(np.tile(combined_results, 2))

kc1 = np.concatenate(kc_list)
kc2 = kc1 ** 2

print("kc1 length:", len(kc1))
print("kc2 length:", len(kc2))


def r_index(x, i):
    return x[i - 1]

print("\nExample elements (R-style indices):")
print("kc1[5]   =", r_index(kc1, 5))
print("kc1[320] =", r_index(kc1, 320))
kc1 length: 7280
kc2 length: 7280

Example elements (R-style indices):
kc1[5]   = 46.73129272126278
kc1[320] = -55.41477115331864

5. Assemble Training Frame (ASDRs)¶

In [17]:
# --- Group labels ---
yngold = (
    ["Group[0,14]"] * (t_train * 15) +
    ["Group[15,40]"] * (t_train * 26) +
    ["Group[41,90]"] * (t_train * 50)
) * 4

# --- Gender / Country ---
gender  = (["Female"] * (t_train * 91) + ["Male"] * (t_train * 91)) * 2
country = ["AUT"] * (t_train * 91 * 2) + ["CZE"] * (t_train * 91 * 2)

# --- Year, age, cohort ---
year   = np.tile(np.arange(1991, 1991 + t_train), 4 * 91)
age    = np.tile(np.repeat(np.arange(0, 91), t_train), 4)
cohort = year - age

# --- Response 
MB = M.copy()
y  = MB.to_numpy().ravel(order="F")

ASDRs = pd.DataFrame({
    "kc1": kc1,
    "kc2": kc2,
    "cohort": cohort,
    "y": y,
    "age": age,
    "gender": gender,
    "Country": country,
    "year": year,
    "yngold": yngold
})

# Categorical conversions
ASDRs["age"]    = pd.Categorical(ASDRs["age"], categories=np.arange(0, 91), ordered=True)
ASDRs["gender"] = pd.Categorical(ASDRs["gender"], categories=["Female", "Male"])
ASDRs["Country"]= pd.Categorical(ASDRs["Country"], categories=["AUT", "CZE"])

# Numeric/additional
ASDRs["agenum"] = ASDRs["age"].astype(int)
ASDRs["subject"] = ASDRs["Country"].astype(str) + "_" + ASDRs["gender"].astype(str) + "_" + ASDRs["age"].astype(str)

print(ASDRs.info())
display(ASDRs.head())
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 7280 entries, 0 to 7279
Data columns (total 11 columns):
 #   Column   Non-Null Count  Dtype   
---  ------   --------------  -----   
 0   kc1      7280 non-null   float64 
 1   kc2      7280 non-null   float64 
 2   cohort   7280 non-null   int64   
 3   y        7280 non-null   float64 
 4   age      7280 non-null   category
 5   gender   7280 non-null   category
 6   Country  7280 non-null   category
 7   year     7280 non-null   int64   
 8   yngold   7280 non-null   object  
 9   agenum   7280 non-null   int64   
 10  subject  7280 non-null   object  
dtypes: category(3), float64(3), int64(3), object(2)
memory usage: 479.5+ KB
None
kc1 kc2 cohort y age gender Country year yngold agenum subject
0 46.026979 2118.482772 1991 -5.007169 0 Female AUT 1991 Group[0,14] 0 AUT_Female_0
1 46.312937 2144.888129 1992 -5.033727 0 Female AUT 1992 Group[0,14] 0 AUT_Female_0
2 45.289947 2051.179291 1993 -5.184065 0 Female AUT 1993 Group[0,14] 0 AUT_Female_0
3 46.008251 2116.759137 1994 -5.196172 0 Female AUT 1994 Group[0,14] 0 AUT_Female_0
4 46.731293 2183.813719 1995 -5.332980 0 Female AUT 1995 Group[0,14] 0 AUT_Female_0

6. Plot: PC1 (kc1) over Years, Faceted by Country¶

In [18]:
ASDRsnw = ASDRs.copy()
ASDRsnw["year"] = ASDRsnw["year"].astype(float)
ASDRsnw = ASDRsnw.rename(columns={"yngold": "PC1"})

palette = {
    "Group[0,14]": "red",
    "Group[15,40]": "green",
    "Group[41,90]": "blue"
}

sns.set_theme(style="whitegrid")

g = sns.FacetGrid(
    ASDRsnw, col="Country", hue="PC1", palette=palette, height=6, aspect=19/9/2
)
g.map_dataframe(sns.lineplot, x="year", y="kc1", linewidth=0.8)
g.map_dataframe(sns.scatterplot, x="year", y="kc1", s=16)
g.set_axis_labels("Year", "Value")
g.add_legend(title="PC1")

for ax in g.axes.flat:
    ax.tick_params(axis="x", rotation=90, labelsize=12)
    ax.tick_params(axis="y", labelsize=12)
    ax.set_xlabel("Year", fontsize=12)
    ax.set_ylabel("Value", fontsize=12)
    ax.set_title(ax.get_title().replace("Country = ", ""), fontsize=14)

plt.subplots_adjust(bottom=0.25)
plt.savefig("PC1-kct.pdf", bbox_inches="tight", dpi=300)
plt.show()
No description has been provided for this image

7. ASDR vs kc1 at Age 65 — Quadratic fit¶

In [19]:
ASDRs["age_num"] = ASDRs["age"].astype(int)
d65 = ASDRs[ASDRs["age_num"] == 65].copy()

sns.set_theme(style="whitegrid", font_scale=1.1)

def add_quadratic_line(data, color=None, **kwargs):
    x_grid = np.linspace(data["kc1"].min(), data["kc1"].max(), 100)
    coeffs = np.polyfit(data["kc1"], data["y"], 2)
    y_pred = np.polyval(coeffs, x_grid)
    plt.plot(x_grid, y_pred, color="black", linewidth=2)

g = sns.FacetGrid(d65, row="gender", col="Country", margin_titles=True, height=4.5, aspect=1.4)
g.map_dataframe(sns.scatterplot, x="kc1", y="y", color="red", alpha=0.6)
g.map_dataframe(add_quadratic_line)
g.set_axis_labels(r"$kc_t$", "Mortality (log)")
g.set_titles(row_template="{row_name}", col_template="{col_name}")
plt.subplots_adjust(top=0.85)
g.fig.suptitle("ASDR vs kc1 at Age 65 — Quadratic fit", fontsize=16)
plt.savefig("yverskct_quadratic.pdf", bbox_inches="tight", dpi=300)
plt.show()
No description has been provided for this image

8. GEE Models (Exchangeable vs AR(1))¶

In [20]:
# Weights
ASDRs["weights"] = np.where(ASDRs["agenum"] >= 65, 4.0, 1.0)


# Formula 
formula = "y ~ gender + age + gender:age:kc1 + gender:age:kc2 + cohort"

geeEx = sm.GEE.from_formula(
    formula=formula,
    groups="subject",
    time="year",
    cov_struct=Exchangeable(),
    family=Gaussian(),
    weights=ASDRs["weights"],
    data=ASDRs
).fit()
print("\n=== GEE (Exchangeable) Summary ===")
print(geeEx.summary())

geeAr1 = sm.GEE.from_formula(
    formula=formula,
    groups="subject",
    time="year",
    cov_struct=Autoregressive(),
    family=Gaussian(),
    weights=ASDRs["weights"],
    data=ASDRs
).fit()
print("\n=== GEE (AR1) Summary ===")
print(geeAr1.summary())

print("\nCoefficients (Exchangeable):\n", geeEx.params)
print("\nCovariance matrix (Exchangeable):\n", geeEx.cov_params())

print("\nCoefficients (AR1):\n", geeAr1.params)
print("\nCovariance matrix (AR1):\n", geeAr1.cov_params())
=== GEE (Exchangeable) Summary ===
                               GEE Regression Results                              
===================================================================================
Dep. Variable:                           y   No. Observations:                 7280
Model:                                 GEE   No. clusters:                      364
Method:                        Generalized   Min. cluster size:                  20
                      Estimating Equations   Max. cluster size:                  20
Family:                           Gaussian   Mean cluster size:                20.0
Dependence structure:         Exchangeable   Num. iterations:                    16
Date:                     Sun, 26 Oct 2025   Scale:                           0.021
Covariance type:                    robust   Time:                         12:11:20
==============================================================================================
                                 coef    std err          z      P>|z|      [0.025      0.975]
----------------------------------------------------------------------------------------------
Intercept                     61.7001     10.201      6.049      0.000      41.707      81.693
gender[T.Male]                -0.3363      0.756     -0.445      0.657      -1.819       1.146
age[T.1]                     -16.1496     18.478     -0.874      0.382     -52.366      20.067
age[T.2]                     -81.6107     27.762     -2.940      0.003    -136.024     -27.197
age[T.3]                     -45.8482     31.775     -1.443      0.149    -108.125      16.429
age[T.4]                     -50.0914     20.806     -2.408      0.016     -90.870      -9.313
age[T.5]                     -63.4445     21.113     -3.005      0.003    -104.824     -22.065
age[T.6]                     -96.1645     10.500     -9.158      0.000    -116.745     -75.584
age[T.7]                     -90.1308     45.969     -1.961      0.050    -180.229      -0.033
age[T.8]                     -77.3813     39.032     -1.983      0.047    -153.882      -0.880
age[T.9]                     -45.9248     24.148     -1.902      0.057     -93.254       1.404
age[T.10]                    -68.2907     18.694     -3.653      0.000    -104.930     -31.651
age[T.11]                    -70.6954     30.854     -2.291      0.022    -131.168     -10.223
age[T.12]                    -61.7428     23.469     -2.631      0.009    -107.741     -15.745
age[T.13]                   -119.1676     24.317     -4.901      0.000    -166.827     -71.508
age[T.14]                    -28.2506     12.443     -2.270      0.023     -52.639      -3.863
age[T.15]                     25.2398     27.892      0.905      0.366     -29.428      79.907
age[T.16]                    -46.3578     35.763     -1.296      0.195    -116.452      23.736
age[T.17]                   -110.3236     37.317     -2.956      0.003    -183.464     -37.183
age[T.18]                   -190.1582     39.273     -4.842      0.000    -267.132    -113.184
age[T.19]                    -54.3600     13.155     -4.132      0.000     -80.143     -28.577
age[T.20]                    -10.8407     22.633     -0.479      0.632     -55.201      33.519
age[T.21]                    -13.6206     38.475     -0.354      0.723     -89.030      61.789
age[T.22]                    -64.3848     19.296     -3.337      0.001    -102.204     -26.565
age[T.23]                    -66.1394     18.086     -3.657      0.000    -101.588     -30.691
age[T.24]                    -45.3686     44.789     -1.013      0.311    -133.154      42.417
age[T.25]                    -36.7159     39.130     -0.938      0.348    -113.410      39.978
age[T.26]                    -92.7466     14.971     -6.195      0.000    -122.090     -63.403
age[T.27]                     -2.7171     53.078     -0.051      0.959    -106.748     101.313
age[T.28]                    -89.3870     17.492     -5.110      0.000    -123.671     -55.104
age[T.29]                    -49.9837     29.447     -1.697      0.090    -107.698       7.731
age[T.30]                    -40.7180     30.325     -1.343      0.179    -100.154      18.718
age[T.31]                    -89.9956     36.856     -2.442      0.015    -162.233     -17.758
age[T.32]                    -19.8573     55.260     -0.359      0.719    -128.165      88.451
age[T.33]                    -57.0438     28.651     -1.991      0.046    -113.198      -0.890
age[T.34]                    -72.5697     30.181     -2.404      0.016    -131.723     -13.416
age[T.35]                   -114.6544     35.393     -3.240      0.001    -184.022     -45.286
age[T.36]                   -101.3875     25.538     -3.970      0.000    -151.440     -51.335
age[T.37]                    -64.5945     16.665     -3.876      0.000     -97.256     -31.933
age[T.38]                    -81.6640     12.892     -6.334      0.000    -106.933     -56.395
age[T.39]                    -55.0012     21.035     -2.615      0.009     -96.228     -13.774
age[T.40]                   -131.8426     25.537     -5.163      0.000    -181.895     -81.791
age[T.41]                    -69.6035     11.921     -5.839      0.000     -92.968     -46.239
age[T.42]                    -77.0310     12.228     -6.300      0.000    -100.997     -53.065
age[T.43]                    -67.1191     13.151     -5.104      0.000     -92.896     -41.343
age[T.44]                    -74.4208     11.567     -6.434      0.000     -97.092     -51.750
age[T.45]                    -68.1888     13.419     -5.082      0.000     -94.489     -41.888
age[T.46]                    -63.7835     11.341     -5.624      0.000     -86.011     -41.556
age[T.47]                    -65.4292     11.783     -5.553      0.000     -88.523     -42.336
age[T.48]                    -69.2596     11.121     -6.228      0.000     -91.056     -47.463
age[T.49]                    -64.2824     10.444     -6.155      0.000     -84.752     -43.812
age[T.50]                    -67.9880     11.239     -6.050      0.000     -90.015     -45.961
age[T.51]                    -62.5443     10.287     -6.080      0.000     -82.707     -42.381
age[T.52]                    -65.8462     10.285     -6.402      0.000     -86.005     -45.687
age[T.53]                    -62.1764     10.523     -5.908      0.000     -82.802     -41.551
age[T.54]                    -59.2167     10.531     -5.623      0.000     -79.857     -38.576
age[T.55]                    -64.9972     10.385     -6.259      0.000     -85.350     -44.644
age[T.56]                    -57.1467     11.035     -5.179      0.000     -78.775     -35.518
age[T.57]                    -57.4153     10.663     -5.385      0.000     -78.314     -36.517
age[T.58]                    -54.9067     10.915     -5.030      0.000     -76.300     -33.514
age[T.59]                    -51.9222     11.797     -4.401      0.000     -75.043     -28.801
age[T.60]                    -53.1064     11.250     -4.721      0.000     -75.156     -31.057
age[T.61]                    -54.6574     11.447     -4.775      0.000     -77.093     -32.222
age[T.62]                    -53.8507     11.599     -4.643      0.000     -76.584     -31.118
age[T.63]                    -54.5702     11.118     -4.908      0.000     -76.362     -32.778
age[T.64]                    -60.5770     10.498     -5.770      0.000     -81.153     -40.001
age[T.65]                    -56.8784     11.446     -4.969      0.000     -79.313     -34.444
age[T.66]                    -58.3614     10.271     -5.682      0.000     -78.493     -38.230
age[T.67]                    -59.8600     10.516     -5.692      0.000     -80.471     -39.249
age[T.68]                    -59.8500     10.217     -5.858      0.000     -79.876     -39.824
age[T.69]                    -62.9341     10.387     -6.059      0.000     -83.292     -42.576
age[T.70]                    -60.9039     10.286     -5.921      0.000     -81.064     -40.744
age[T.71]                    -63.6197     10.283     -6.187      0.000     -83.774     -43.465
age[T.72]                    -60.6205     10.175     -5.958      0.000     -80.563     -40.678
age[T.73]                    -62.1005     10.288     -6.036      0.000     -82.265     -41.936
age[T.74]                    -61.2670     10.223     -5.993      0.000     -81.304     -41.230
age[T.75]                    -66.0058     10.300     -6.408      0.000     -86.194     -45.818
age[T.76]                    -60.7683     10.255     -5.925      0.000     -80.869     -40.668
age[T.77]                    -61.5279     10.242     -6.007      0.000     -81.602     -41.454
age[T.78]                    -62.2699     10.327     -6.030      0.000     -82.510     -42.029
age[T.79]                    -63.4822     10.338     -6.141      0.000     -83.744     -43.220
age[T.80]                    -62.4250     10.311     -6.054      0.000     -82.633     -42.216
age[T.81]                    -62.8279     10.257     -6.125      0.000     -82.932     -42.724
age[T.82]                    -63.1900     10.227     -6.179      0.000     -83.234     -43.146
age[T.83]                    -63.1808     10.309     -6.129      0.000     -83.386     -42.976
age[T.84]                    -63.9417     10.198     -6.270      0.000     -83.930     -43.954
age[T.85]                    -63.9654     10.224     -6.256      0.000     -84.004     -43.926
age[T.86]                    -62.2358     10.194     -6.105      0.000     -82.216     -42.256
age[T.87]                    -62.8609     10.260     -6.127      0.000     -82.971     -42.751
age[T.88]                    -62.8768     10.183     -6.175      0.000     -82.834     -42.919
age[T.89]                    -64.0033     10.215     -6.266      0.000     -84.024     -43.982
age[T.90]                    -59.8182     10.172     -5.880      0.000     -79.756     -39.880
gender[Female]:age[0]:kc1     -2.7438      0.431     -6.364      0.000      -3.589      -1.899
gender[Male]:age[0]:kc1       -2.7293      0.430     -6.346      0.000      -3.572      -1.886
gender[Female]:age[1]:kc1     -2.2134      0.659     -3.358      0.001      -3.505      -0.922
gender[Male]:age[1]:kc1       -2.1365      0.664     -3.220      0.001      -3.437      -0.836
gender[Female]:age[2]:kc1      0.6165      1.101      0.560      0.575      -1.541       2.774
gender[Male]:age[2]:kc1        0.6226      1.090      0.571      0.568      -1.514       2.759
gender[Female]:age[3]:kc1     -0.8348      1.287     -0.649      0.517      -3.357       1.688
gender[Male]:age[3]:kc1       -0.9433      1.282     -0.736      0.462      -3.455       1.569
gender[Female]:age[4]:kc1     -0.7537      0.775     -0.972      0.331      -2.273       0.766
gender[Male]:age[4]:kc1       -0.7179      0.779     -0.922      0.357      -2.244       0.808
gender[Female]:age[5]:kc1     -0.1423      0.785     -0.181      0.856      -1.682       1.397
gender[Male]:age[5]:kc1       -0.1134      0.792     -0.143      0.886      -1.666       1.439
gender[Female]:age[6]:kc1      1.2352      0.112     10.999      0.000       1.015       1.455
gender[Male]:age[6]:kc1        1.2668      0.115     10.985      0.000       1.041       1.493
gender[Female]:age[7]:kc1      0.9395      1.907      0.493      0.622      -2.798       4.677
gender[Male]:age[7]:kc1        1.0646      1.926      0.553      0.580      -2.710       4.840
gender[Female]:age[8]:kc1      0.4432      1.619      0.274      0.784      -2.729       3.616
gender[Male]:age[8]:kc1        0.4746      1.639      0.290      0.772      -2.738       3.688
gender[Female]:age[9]:kc1     -0.9397      0.958     -0.981      0.327      -2.818       0.938
gender[Male]:age[9]:kc1       -0.9221      0.949     -0.972      0.331      -2.781       0.937
gender[Female]:age[10]:kc1    -0.0106      0.699     -0.015      0.988      -1.381       1.359
gender[Male]:age[10]:kc1      -0.0142      0.667     -0.021      0.983      -1.322       1.293
gender[Female]:age[11]:kc1     0.0886      1.234      0.072      0.943      -2.330       2.507
gender[Male]:age[11]:kc1       0.0849      1.270      0.067      0.947      -2.405       2.575
gender[Female]:age[12]:kc1    -0.2633      0.897     -0.294      0.769      -2.021       1.494
gender[Male]:age[12]:kc1      -0.1952      0.887     -0.220      0.826      -1.934       1.544
gender[Female]:age[13]:kc1     2.1311      0.953      2.236      0.025       0.263       3.999
gender[Male]:age[13]:kc1       2.1750      0.946      2.300      0.021       0.321       4.029
gender[Female]:age[14]:kc1    -1.7950      0.305     -5.876      0.000      -2.394      -1.196
gender[Male]:age[14]:kc1      -1.6944      0.318     -5.320      0.000      -2.319      -1.070
gender[Female]:age[15]:kc1     3.5993      0.979      3.678      0.000       1.681       5.517
gender[Male]:age[15]:kc1       3.5210      0.998      3.528      0.000       1.565       5.477
gender[Female]:age[16]:kc1     0.8152      1.288      0.633      0.527      -1.709       3.339
gender[Male]:age[16]:kc1       0.7634      1.294      0.590      0.555      -1.772       3.299
gender[Female]:age[17]:kc1    -1.6082      1.341     -1.199      0.230      -4.236       1.020
gender[Male]:age[17]:kc1      -1.6805      1.348     -1.246      0.213      -4.323       0.962
gender[Female]:age[18]:kc1    -4.6712      1.419     -3.291      0.001      -7.453      -1.889
gender[Male]:age[18]:kc1      -4.6691      1.430     -3.265      0.001      -7.472      -1.866
gender[Female]:age[19]:kc1     0.5533      0.313      1.769      0.077      -0.060       1.166
gender[Male]:age[19]:kc1       0.4244      0.304      1.398      0.162      -0.171       1.019
gender[Female]:age[20]:kc1     2.1699      0.764      2.841      0.004       0.673       3.667
gender[Male]:age[20]:kc1       2.1042      0.747      2.817      0.005       0.640       3.568
gender[Female]:age[21]:kc1     2.0728      1.407      1.474      0.141      -0.684       4.830
gender[Male]:age[21]:kc1       2.0045      1.393      1.439      0.150      -0.725       4.734
gender[Female]:age[22]:kc1     0.1566      0.635      0.247      0.805      -1.087       1.400
gender[Male]:age[22]:kc1       0.0800      0.630      0.127      0.899      -1.154       1.314
gender[Female]:age[23]:kc1     0.0462      0.549      0.084      0.933      -1.030       1.122
gender[Male]:age[23]:kc1       0.0216      0.563      0.038      0.969      -1.082       1.125
gender[Female]:age[24]:kc1     0.8178      1.643      0.498      0.619      -2.402       4.038
gender[Male]:age[24]:kc1       0.8017      1.647      0.487      0.626      -2.426       4.030
gender[Female]:age[25]:kc1     1.1732      1.413      0.831      0.406      -1.595       3.942
gender[Male]:age[25]:kc1       1.1113      1.422      0.781      0.435      -1.676       3.899
gender[Female]:age[26]:kc1    -0.9752      0.392     -2.486      0.013      -1.744      -0.206
gender[Male]:age[26]:kc1      -0.9852      0.404     -2.440      0.015      -1.776      -0.194
gender[Female]:age[27]:kc1     2.4624      1.967      1.252      0.211      -1.392       6.317
gender[Male]:age[27]:kc1       2.3961      1.976      1.212      0.225      -1.478       6.270
gender[Female]:age[28]:kc1    -0.8288      0.539     -1.537      0.124      -1.886       0.228
gender[Male]:age[28]:kc1      -0.8925      0.538     -1.660      0.097      -1.946       0.161
gender[Female]:age[29]:kc1     0.6672      1.027      0.649      0.516      -1.346       2.681
gender[Male]:age[29]:kc1       0.6031      1.032      0.584      0.559      -1.420       2.626
gender[Female]:age[30]:kc1     1.0147      1.070      0.949      0.343      -1.082       3.111
gender[Male]:age[30]:kc1       0.9535      1.078      0.884      0.376      -1.159       3.066
gender[Female]:age[31]:kc1    -0.9214      1.335     -0.690      0.490      -3.537       1.695
gender[Male]:age[31]:kc1      -0.9296      1.340     -0.694      0.488      -3.556       1.697
gender[Female]:age[32]:kc1     1.7617      2.048      0.860      0.390      -2.253       5.776
gender[Male]:age[32]:kc1       1.6885      2.048      0.825      0.410      -2.325       5.702
gender[Female]:age[33]:kc1     0.3452      1.015      0.340      0.734      -1.645       2.335
gender[Male]:age[33]:kc1       0.3225      1.000      0.323      0.747      -1.637       2.282
gender[Female]:age[34]:kc1    -0.1954      1.068     -0.183      0.855      -2.289       1.898
gender[Male]:age[34]:kc1      -0.2510      1.073     -0.234      0.815      -2.355       1.853
gender[Female]:age[35]:kc1    -1.8003      1.279     -1.408      0.159      -4.306       0.706
gender[Male]:age[35]:kc1      -1.8749      1.278     -1.467      0.142      -4.380       0.630
gender[Female]:age[36]:kc1    -1.2843      0.900     -1.427      0.153      -3.048       0.479
gender[Male]:age[36]:kc1      -1.3935      0.877     -1.588      0.112      -3.113       0.326
gender[Female]:age[37]:kc1     0.0642      0.500      0.128      0.898      -0.915       1.043
gender[Male]:age[37]:kc1       0.0279      0.499      0.056      0.955      -0.951       1.007
gender[Female]:age[38]:kc1    -0.5790      0.300     -1.927      0.054      -1.168       0.010
gender[Male]:age[38]:kc1      -0.6306      0.297     -2.124      0.034      -1.213      -0.049
gender[Female]:age[39]:kc1     0.3996      0.696      0.574      0.566      -0.965       1.764
gender[Male]:age[39]:kc1       0.3728      0.691      0.540      0.590      -0.981       1.727
gender[Female]:age[40]:kc1    -2.4782      0.890     -2.785      0.005      -4.222      -0.734
gender[Male]:age[40]:kc1      -2.5434      0.883     -2.880      0.004      -4.274      -0.813
gender[Female]:age[41]:kc1    -0.0699      0.295     -0.237      0.813      -0.648       0.508
gender[Male]:age[41]:kc1      -0.1637      0.291     -0.562      0.574      -0.735       0.407
gender[Female]:age[42]:kc1    -0.4372      0.319     -1.369      0.171      -1.063       0.188
gender[Male]:age[42]:kc1      -0.5170      0.319     -1.619      0.105      -1.143       0.109
gender[Female]:age[43]:kc1     0.0258      0.399      0.065      0.948      -0.755       0.807
gender[Male]:age[43]:kc1      -0.0564      0.387     -0.146      0.884      -0.815       0.702
gender[Female]:age[44]:kc1    -0.3087      0.262     -1.176      0.239      -0.823       0.206
gender[Male]:age[44]:kc1      -0.4084      0.258     -1.586      0.113      -0.913       0.096
gender[Female]:age[45]:kc1    -0.0394      0.419     -0.094      0.925      -0.860       0.782
gender[Male]:age[45]:kc1      -0.1185      0.407     -0.291      0.771      -0.916       0.679
gender[Female]:age[46]:kc1     0.1765      0.241      0.734      0.463      -0.295       0.648
gender[Male]:age[46]:kc1       0.0994      0.233      0.426      0.670      -0.358       0.556
gender[Female]:age[47]:kc1     0.0903      0.284      0.317      0.751      -0.467       0.648
gender[Male]:age[47]:kc1      -0.0012      0.276     -0.004      0.997      -0.543       0.540
gender[Female]:age[48]:kc1    -0.0907      0.217     -0.417      0.677      -0.517       0.335
gender[Male]:age[48]:kc1      -0.1763      0.210     -0.840      0.401      -0.587       0.235
gender[Female]:age[49]:kc1     0.1402      0.116      1.209      0.227      -0.087       0.368
gender[Male]:age[49]:kc1       0.0561      0.115      0.488      0.626      -0.169       0.282
gender[Female]:age[50]:kc1    -0.0362      0.231     -0.157      0.875      -0.489       0.416
gender[Male]:age[50]:kc1      -0.1262      0.223     -0.565      0.572      -0.564       0.311
gender[Female]:age[51]:kc1     0.2218      0.076      2.903      0.004       0.072       0.372
gender[Male]:age[51]:kc1       0.1340      0.077      1.734      0.083      -0.017       0.285
gender[Female]:age[52]:kc1     0.0742      0.076      0.970      0.332      -0.076       0.224
gender[Male]:age[52]:kc1      -0.0264      0.078     -0.340      0.734      -0.179       0.126
gender[Female]:age[53]:kc1     0.2288      0.129      1.776      0.076      -0.024       0.481
gender[Male]:age[53]:kc1       0.1416      0.132      1.070      0.284      -0.118       0.401
gender[Female]:age[54]:kc1     0.3620      0.130      2.793      0.005       0.108       0.616
gender[Male]:age[54]:kc1       0.2872      0.135      2.135      0.033       0.024       0.551
gender[Female]:age[55]:kc1     0.0832      0.100      0.830      0.407      -0.113       0.280
gender[Male]:age[55]:kc1      -0.0029      0.105     -0.028      0.978      -0.209       0.203
gender[Female]:age[56]:kc1     0.4526      0.200      2.258      0.024       0.060       0.845
gender[Male]:age[56]:kc1       0.3703      0.205      1.803      0.071      -0.032       0.773
gender[Female]:age[57]:kc1     0.4267      0.152      2.809      0.005       0.129       0.724
gender[Male]:age[57]:kc1       0.3544      0.153      2.315      0.021       0.054       0.654
gender[Female]:age[58]:kc1     0.5485      0.186      2.941      0.003       0.183       0.914
gender[Male]:age[58]:kc1       0.4684      0.189      2.483      0.013       0.099       0.838
gender[Female]:age[59]:kc1     0.6732      0.279      2.414      0.016       0.127       1.220
gender[Male]:age[59]:kc1       0.5983      0.282      2.118      0.034       0.045       1.152
gender[Female]:age[60]:kc1     0.6193      0.230      2.698      0.007       0.169       1.069
gender[Male]:age[60]:kc1       0.5340      0.224      2.382      0.017       0.095       0.973
gender[Female]:age[61]:kc1     0.5352      0.247      2.163      0.031       0.050       1.020
gender[Male]:age[61]:kc1       0.4599      0.244      1.883      0.060      -0.019       0.939
gender[Female]:age[62]:kc1     0.5618      0.262      2.143      0.032       0.048       1.076
gender[Male]:age[62]:kc1       0.4904      0.258      1.902      0.057      -0.015       0.996
gender[Female]:age[63]:kc1     0.5216      0.211      2.476      0.013       0.109       0.934
gender[Male]:age[63]:kc1       0.4522      0.211      2.144      0.032       0.039       0.866
gender[Female]:age[64]:kc1     0.2292      0.125      1.838      0.066      -0.015       0.474
gender[Male]:age[64]:kc1       0.1638      0.122      1.344      0.179      -0.075       0.403
gender[Female]:age[65]:kc1     0.3919      0.250      1.565      0.118      -0.099       0.883
gender[Male]:age[65]:kc1       0.3294      0.243      1.357      0.175      -0.146       0.805
gender[Female]:age[66]:kc1     0.3110      0.073      4.233      0.000       0.167       0.455
gender[Male]:age[66]:kc1       0.2610      0.070      3.708      0.000       0.123       0.399
gender[Female]:age[67]:kc1     0.2381      0.131      1.822      0.068      -0.018       0.494
gender[Male]:age[67]:kc1       0.1824      0.125      1.455      0.146      -0.063       0.428
gender[Female]:age[68]:kc1     0.2272      0.054      4.196      0.000       0.121       0.333
gender[Male]:age[68]:kc1       0.1763      0.052      3.420      0.001       0.075       0.277
gender[Female]:age[69]:kc1     0.0745      0.104      0.717      0.473      -0.129       0.278
gender[Male]:age[69]:kc1       0.0240      0.101      0.238      0.812      -0.174       0.222
gender[Female]:age[70]:kc1     0.1641      0.078      2.114      0.035       0.012       0.316
gender[Male]:age[70]:kc1       0.1207      0.076      1.589      0.112      -0.028       0.270
gender[Female]:age[71]:kc1     0.0247      0.074      0.335      0.738      -0.120       0.169
gender[Male]:age[71]:kc1      -0.0150      0.078     -0.193      0.847      -0.168       0.138
gender[Female]:age[72]:kc1     0.1603      0.030      5.373      0.000       0.102       0.219
gender[Male]:age[72]:kc1       0.1285      0.030      4.340      0.000       0.070       0.187
gender[Female]:age[73]:kc1     0.0884      0.079      1.123      0.261      -0.066       0.243
gender[Male]:age[73]:kc1       0.0599      0.075      0.796      0.426      -0.088       0.207
gender[Female]:age[74]:kc1     0.1281      0.057      2.245      0.025       0.016       0.240
gender[Male]:age[74]:kc1       0.1020      0.055      1.853      0.064      -0.006       0.210
gender[Female]:age[75]:kc1    -0.0976      0.082     -1.187      0.235      -0.259       0.064
gender[Male]:age[75]:kc1      -0.1259      0.079     -1.587      0.112      -0.281       0.030
gender[Female]:age[76]:kc1     0.1423      0.068      2.080      0.038       0.008       0.276
gender[Male]:age[76]:kc1       0.1214      0.066      1.846      0.065      -0.008       0.250
gender[Female]:age[77]:kc1     0.1076      0.064      1.680      0.093      -0.018       0.233
gender[Male]:age[77]:kc1       0.0815      0.061      1.329      0.184      -0.039       0.202
gender[Female]:age[78]:kc1     0.0660      0.091      0.729      0.466      -0.111       0.243
gender[Male]:age[78]:kc1       0.0456      0.086      0.530      0.596      -0.123       0.214
gender[Female]:age[79]:kc1     0.0065      0.092      0.071      0.943      -0.174       0.187
gender[Male]:age[79]:kc1      -0.0158      0.090     -0.175      0.861      -0.193       0.161
gender[Female]:age[80]:kc1     0.0578      0.084      0.693      0.489      -0.106       0.221
gender[Male]:age[80]:kc1       0.0354      0.083      0.427      0.669      -0.127       0.198
gender[Female]:age[81]:kc1     0.0349      0.068      0.516      0.606      -0.098       0.168
gender[Male]:age[81]:kc1       0.0163      0.067      0.244      0.808      -0.115       0.148
gender[Female]:age[82]:kc1     0.0179      0.058      0.307      0.759      -0.096       0.132
gender[Male]:age[82]:kc1       0.0007      0.056      0.013      0.990      -0.109       0.111
gender[Female]:age[83]:kc1     0.0177      0.083      0.214      0.830      -0.144       0.180
gender[Male]:age[83]:kc1      -0.0032      0.084     -0.038      0.970      -0.167       0.161
gender[Female]:age[84]:kc1    -0.0178      0.043     -0.410      0.682      -0.103       0.067
gender[Male]:age[84]:kc1      -0.0401      0.046     -0.881      0.379      -0.129       0.049
gender[Female]:age[85]:kc1    -0.0165      0.057     -0.287      0.774      -0.129       0.096
gender[Male]:age[85]:kc1      -0.0395      0.055     -0.715      0.475      -0.148       0.069
gender[Female]:age[86]:kc1     0.0602      0.042      1.425      0.154      -0.023       0.143
gender[Male]:age[86]:kc1       0.0401      0.042      0.964      0.335      -0.041       0.122
gender[Female]:age[87]:kc1     0.0291      0.068      0.429      0.668      -0.104       0.162
gender[Male]:age[87]:kc1       0.0074      0.071      0.104      0.917      -0.132       0.146
gender[Female]:age[88]:kc1     0.0250      0.035      0.707      0.480      -0.044       0.094
gender[Male]:age[88]:kc1       0.0034      0.035      0.095      0.924      -0.066       0.072
gender[Female]:age[89]:kc1    -0.0292      0.051     -0.577      0.564      -0.129       0.070
gender[Male]:age[89]:kc1      -0.0456      0.054     -0.844      0.399      -0.152       0.060
gender[Female]:age[90]:kc1     0.1656      0.029      5.809      0.000       0.110       0.221
gender[Male]:age[90]:kc1       0.1493      0.029      5.196      0.000       0.093       0.206
gender[Female]:age[0]:kc2      0.0272      0.005      6.008      0.000       0.018       0.036
gender[Male]:age[0]:kc2        0.0272      0.005      5.999      0.000       0.018       0.036
gender[Female]:age[1]:kc2      0.0222      0.007      3.152      0.002       0.008       0.036
gender[Male]:age[1]:kc2        0.0208      0.007      2.910      0.004       0.007       0.035
gender[Female]:age[2]:kc2     -0.0086      0.012     -0.733      0.463      -0.032       0.014
gender[Male]:age[2]:kc2       -0.0085      0.011     -0.745      0.456      -0.031       0.014
gender[Female]:age[3]:kc2      0.0059      0.014      0.432      0.666      -0.021       0.033
gender[Male]:age[3]:kc2        0.0085      0.014      0.627      0.531      -0.018       0.035
gender[Female]:age[4]:kc2      0.0060      0.008      0.727      0.467      -0.010       0.022
gender[Male]:age[4]:kc2        0.0056      0.008      0.667      0.505      -0.011       0.022
gender[Female]:age[5]:kc2     -0.0010      0.008     -0.118      0.906      -0.017       0.015
gender[Male]:age[5]:kc2       -0.0013      0.008     -0.158      0.875      -0.018       0.015
gender[Female]:age[6]:kc2     -0.0155      0.001    -13.333      0.000      -0.018      -0.013
gender[Male]:age[6]:kc2       -0.0159      0.001    -12.729      0.000      -0.018      -0.013
gender[Female]:age[7]:kc2     -0.0119      0.020     -0.588      0.557      -0.052       0.028
gender[Male]:age[7]:kc2       -0.0144      0.021     -0.695      0.487      -0.055       0.026
gender[Female]:age[8]:kc2     -0.0072      0.017     -0.414      0.679      -0.041       0.027
gender[Male]:age[8]:kc2       -0.0075      0.018     -0.425      0.671      -0.042       0.027
gender[Female]:age[9]:kc2      0.0080      0.010      0.761      0.447      -0.013       0.029
gender[Male]:age[9]:kc2        0.0079      0.010      0.772      0.440      -0.012       0.028
gender[Female]:age[10]:kc2    -0.0017      0.008     -0.212      0.832      -0.017       0.014
gender[Male]:age[10]:kc2      -0.0012      0.007     -0.174      0.861      -0.015       0.013
gender[Female]:age[11]:kc2    -0.0027      0.013     -0.207      0.836      -0.028       0.023
gender[Male]:age[11]:kc2      -0.0023      0.014     -0.169      0.865      -0.029       0.025
gender[Female]:age[12]:kc2     0.0008      0.009      0.080      0.936      -0.018       0.019
gender[Male]:age[12]:kc2      -0.0003      0.009     -0.034      0.973      -0.019       0.018
gender[Female]:age[13]:kc2    -0.0241      0.010     -2.345      0.019      -0.044      -0.004
gender[Male]:age[13]:kc2      -0.0247      0.010     -2.440      0.015      -0.045      -0.005
gender[Female]:age[14]:kc2     0.0184      0.003      5.635      0.000       0.012       0.025
gender[Male]:age[14]:kc2       0.0165      0.004      4.686      0.000       0.010       0.023
gender[Female]:age[15]:kc2     0.0334      0.009      3.623      0.000       0.015       0.051
gender[Male]:age[15]:kc2       0.0322      0.010      3.354      0.001       0.013       0.051
gender[Female]:age[16]:kc2     0.0064      0.012      0.532      0.595      -0.017       0.030
gender[Male]:age[16]:kc2       0.0058      0.012      0.477      0.633      -0.018       0.030
gender[Female]:age[17]:kc2    -0.0165      0.013     -1.317      0.188      -0.041       0.008
gender[Male]:age[17]:kc2      -0.0174      0.013     -1.376      0.169      -0.042       0.007
gender[Female]:age[18]:kc2    -0.0458      0.013     -3.454      0.001      -0.072      -0.020
gender[Male]:age[18]:kc2      -0.0452      0.013     -3.359      0.001      -0.072      -0.019
gender[Female]:age[19]:kc2     0.0044      0.003      1.507      0.132      -0.001       0.010
gender[Male]:age[19]:kc2       0.0025      0.003      0.905      0.366      -0.003       0.008
gender[Female]:age[20]:kc2     0.0194      0.007      2.692      0.007       0.005       0.034
gender[Male]:age[20]:kc2       0.0187      0.007      2.709      0.007       0.005       0.032
gender[Female]:age[21]:kc2     0.0186      0.013      1.392      0.164      -0.008       0.045
gender[Male]:age[21]:kc2       0.0178      0.013      1.364      0.173      -0.008       0.043
gender[Female]:age[22]:kc2     0.0005      0.006      0.075      0.940      -0.012       0.013
gender[Male]:age[22]:kc2      -0.0004      0.006     -0.069      0.945      -0.012       0.011
gender[Female]:age[23]:kc2    -0.0010      0.005     -0.196      0.845      -0.011       0.009
gender[Male]:age[23]:kc2      -0.0009      0.005     -0.168      0.867      -0.011       0.009
gender[Female]:age[24]:kc2     0.0062      0.015      0.401      0.689      -0.024       0.037
gender[Male]:age[24]:kc2       0.0064      0.016      0.413      0.679      -0.024       0.037
gender[Female]:age[25]:kc2     0.0098      0.013      0.742      0.458      -0.016       0.036
gender[Male]:age[25]:kc2       0.0092      0.013      0.686      0.493      -0.017       0.035
gender[Female]:age[26]:kc2    -0.0108      0.004     -3.028      0.002      -0.018      -0.004
gender[Male]:age[26]:kc2      -0.0104      0.004     -2.819      0.005      -0.018      -0.003
gender[Female]:age[27]:kc2     0.0220      0.019      1.187      0.235      -0.014       0.058
gender[Male]:age[27]:kc2       0.0213      0.019      1.137      0.256      -0.015       0.058
gender[Female]:age[28]:kc2    -0.0092      0.005     -1.795      0.073      -0.019       0.001
gender[Male]:age[28]:kc2      -0.0099      0.005     -1.946      0.052      -0.020    6.99e-05
gender[Female]:age[29]:kc2     0.0050      0.010      0.526      0.599      -0.014       0.024
gender[Male]:age[29]:kc2       0.0043      0.010      0.448      0.654      -0.015       0.023
gender[Female]:age[30]:kc2     0.0083      0.010      0.832      0.405      -0.011       0.028
gender[Male]:age[30]:kc2       0.0076      0.010      0.752      0.452      -0.012       0.028
gender[Female]:age[31]:kc2    -0.0106      0.013     -0.846      0.397      -0.035       0.014
gender[Male]:age[31]:kc2      -0.0103      0.013     -0.816      0.415      -0.035       0.014
gender[Female]:age[32]:kc2     0.0150      0.019      0.779      0.436      -0.023       0.053
gender[Male]:age[32]:kc2       0.0141      0.019      0.731      0.465      -0.024       0.052
gender[Female]:age[33]:kc2     0.0016      0.010      0.166      0.868      -0.017       0.020
gender[Male]:age[33]:kc2       0.0016      0.009      0.172      0.864      -0.017       0.020
gender[Female]:age[34]:kc2    -0.0030      0.010     -0.303      0.762      -0.023       0.017
gender[Male]:age[34]:kc2      -0.0037      0.010     -0.362      0.717      -0.024       0.016
gender[Female]:age[35]:kc2    -0.0183      0.012     -1.519      0.129      -0.042       0.005
gender[Male]:age[35]:kc2      -0.0193      0.012     -1.603      0.109      -0.043       0.004
gender[Female]:age[36]:kc2    -0.0132      0.009     -1.535      0.125      -0.030       0.004
gender[Male]:age[36]:kc2      -0.0149      0.008     -1.819      0.069      -0.031       0.001
gender[Female]:age[37]:kc2    -0.0009      0.005     -0.186      0.853      -0.010       0.008
gender[Male]:age[37]:kc2      -0.0012      0.005     -0.247      0.805      -0.010       0.008
gender[Female]:age[38]:kc2    -0.0069      0.003     -2.425      0.015      -0.012      -0.001
gender[Male]:age[38]:kc2      -0.0075      0.003     -2.683      0.007      -0.013      -0.002
gender[Female]:age[39]:kc2     0.0021      0.007      0.320      0.749      -0.011       0.015
gender[Male]:age[39]:kc2       0.0020      0.006      0.309      0.757      -0.011       0.015
gender[Female]:age[40]:kc2    -0.0248      0.008     -2.931      0.003      -0.041      -0.008
gender[Male]:age[40]:kc2      -0.0256      0.008     -3.081      0.002      -0.042      -0.009
gender[Female]:age[41]:kc2    -0.0019      0.003     -0.542      0.588      -0.009       0.005
gender[Male]:age[41]:kc2      -0.0035      0.003     -1.025      0.305      -0.010       0.003
gender[Female]:age[42]:kc2    -0.0063      0.004     -1.697      0.090      -0.014       0.001
gender[Male]:age[42]:kc2      -0.0076      0.004     -2.049      0.040      -0.015      -0.000
gender[Female]:age[43]:kc2    -0.0009      0.005     -0.185      0.853      -0.010       0.008
gender[Male]:age[43]:kc2      -0.0022      0.004     -0.492      0.623      -0.011       0.007
gender[Female]:age[44]:kc2    -0.0046      0.003     -1.507      0.132      -0.011       0.001
gender[Male]:age[44]:kc2      -0.0064      0.003     -2.136      0.033      -0.012      -0.001
gender[Female]:age[45]:kc2    -0.0017      0.005     -0.341      0.733      -0.011       0.008
gender[Male]:age[45]:kc2      -0.0030      0.005     -0.626      0.531      -0.012       0.006
gender[Female]:age[46]:kc2     0.0010      0.003      0.350      0.726      -0.005       0.007
gender[Male]:age[46]:kc2      -0.0002      0.003     -0.078      0.938      -0.005       0.005
gender[Female]:age[47]:kc2 -6.118e-05      0.003     -0.018      0.985      -0.007       0.007
gender[Male]:age[47]:kc2      -0.0016      0.003     -0.500      0.617      -0.008       0.005
gender[Female]:age[48]:kc2    -0.0021      0.003     -0.827      0.408      -0.007       0.003
gender[Male]:age[48]:kc2      -0.0035      0.002     -1.453      0.146      -0.008       0.001
gender[Female]:age[49]:kc2     0.0006      0.001      0.422      0.673      -0.002       0.003
gender[Male]:age[49]:kc2      -0.0008      0.001     -0.572      0.567      -0.003       0.002
gender[Female]:age[50]:kc2    -0.0015      0.003     -0.532      0.595      -0.007       0.004
gender[Male]:age[50]:kc2      -0.0030      0.003     -1.137      0.256      -0.008       0.002
gender[Female]:age[51]:kc2     0.0016      0.001      1.873      0.061   -7.63e-05       0.003
gender[Male]:age[51]:kc2       0.0002      0.001      0.223      0.824      -0.002       0.002
gender[Female]:age[52]:kc2   3.55e-05      0.001      0.040      0.968      -0.002       0.002
gender[Male]:age[52]:kc2      -0.0017      0.001     -1.830      0.067      -0.003       0.000
gender[Female]:age[53]:kc2     0.0017      0.002      1.135      0.257      -0.001       0.005
gender[Male]:age[53]:kc2       0.0003      0.002      0.182      0.856      -0.003       0.003
gender[Female]:age[54]:kc2     0.0032      0.002      2.144      0.032       0.000       0.006
gender[Male]:age[54]:kc2       0.0021      0.002      1.328      0.184      -0.001       0.005
gender[Female]:age[55]:kc2 -6.994e-05      0.001     -0.060      0.952      -0.002       0.002
gender[Male]:age[55]:kc2      -0.0014      0.001     -1.158      0.247      -0.004       0.001
gender[Female]:age[56]:kc2     0.0043      0.002      1.854      0.064      -0.000       0.009
gender[Male]:age[56]:kc2       0.0030      0.002      1.252      0.211      -0.002       0.008
gender[Female]:age[57]:kc2     0.0039      0.002      2.205      0.027       0.000       0.007
gender[Male]:age[57]:kc2       0.0029      0.002      1.604      0.109      -0.001       0.006
gender[Female]:age[58]:kc2     0.0054      0.002      2.500      0.012       0.001       0.010
gender[Male]:age[58]:kc2       0.0042      0.002      1.910      0.056      -0.000       0.009
gender[Female]:age[59]:kc2     0.0068      0.003      2.092      0.036       0.000       0.013
gender[Male]:age[59]:kc2       0.0056      0.003      1.716      0.086      -0.001       0.012
gender[Female]:age[60]:kc2     0.0062      0.003      2.294      0.022       0.001       0.011
gender[Male]:age[60]:kc2       0.0048      0.003      1.875      0.061      -0.000       0.010
gender[Female]:age[61]:kc2     0.0051      0.003      1.785      0.074      -0.001       0.011
gender[Male]:age[61]:kc2       0.0040      0.003      1.426      0.154      -0.002       0.010
gender[Female]:age[62]:kc2     0.0054      0.003      1.749      0.080      -0.001       0.011
gender[Male]:age[62]:kc2       0.0043      0.003      1.472      0.141      -0.001       0.010
gender[Female]:age[63]:kc2     0.0049      0.002      1.988      0.047    6.91e-05       0.010
gender[Male]:age[63]:kc2       0.0039      0.002      1.594      0.111      -0.001       0.009
gender[Female]:age[64]:kc2     0.0014      0.001      0.946      0.344      -0.001       0.004
gender[Male]:age[64]:kc2       0.0005      0.001      0.337      0.736      -0.002       0.003
gender[Female]:age[65]:kc2     0.0032      0.003      1.092      0.275      -0.003       0.009
gender[Male]:age[65]:kc2       0.0024      0.003      0.840      0.401      -0.003       0.008
gender[Female]:age[66]:kc2     0.0022      0.001      2.555      0.011       0.001       0.004
gender[Male]:age[66]:kc2       0.0016      0.001      2.010      0.044    4.02e-05       0.003
gender[Female]:age[67]:kc2     0.0014      0.002      0.879      0.379      -0.002       0.004
gender[Male]:age[67]:kc2       0.0007      0.001      0.448      0.654      -0.002       0.003
gender[Female]:age[68]:kc2     0.0012      0.001      1.856      0.063   -6.47e-05       0.002
gender[Male]:age[68]:kc2       0.0006      0.001      0.920      0.358      -0.001       0.002
gender[Female]:age[69]:kc2    -0.0007      0.001     -0.554      0.579      -0.003       0.002
gender[Male]:age[69]:kc2      -0.0013      0.001     -1.077      0.282      -0.004       0.001
gender[Female]:age[70]:kc2     0.0004      0.001      0.414      0.679      -0.001       0.002
gender[Male]:age[70]:kc2   -7.752e-05      0.001     -0.087      0.930      -0.002       0.002
gender[Female]:age[71]:kc2    -0.0013      0.001     -1.555      0.120      -0.003       0.000
gender[Male]:age[71]:kc2      -0.0017      0.001     -1.894      0.058      -0.003    5.97e-05
gender[Female]:age[72]:kc2     0.0003      0.000      0.761      0.447      -0.000       0.001
gender[Male]:age[72]:kc2    4.656e-05      0.000      0.140      0.889      -0.001       0.001
gender[Female]:age[73]:kc2    -0.0005      0.001     -0.593      0.553      -0.002       0.001
gender[Male]:age[73]:kc2      -0.0007      0.001     -0.811      0.418      -0.002       0.001
gender[Female]:age[74]:kc2 -7.299e-06      0.001     -0.011      0.991      -0.001       0.001
gender[Male]:age[74]:kc2      -0.0001      0.001     -0.179      0.858      -0.001       0.001
gender[Female]:age[75]:kc2    -0.0026      0.001     -2.728      0.006      -0.004      -0.001
gender[Male]:age[75]:kc2      -0.0028      0.001     -3.061      0.002      -0.005      -0.001
gender[Female]:age[76]:kc2     0.0002      0.001      0.239      0.811      -0.001       0.002
gender[Male]:age[76]:kc2       0.0002      0.001      0.226      0.821      -0.001       0.002
gender[Female]:age[77]:kc2    -0.0001      0.001     -0.179      0.858      -0.002       0.001
gender[Male]:age[77]:kc2      -0.0003      0.001     -0.411      0.681      -0.002       0.001
gender[Female]:age[78]:kc2    -0.0006      0.001     -0.593      0.553      -0.003       0.001
gender[Male]:age[78]:kc2      -0.0007      0.001     -0.672      0.501      -0.003       0.001
gender[Female]:age[79]:kc2    -0.0013      0.001     -1.197      0.231      -0.003       0.001
gender[Male]:age[79]:kc2      -0.0014      0.001     -1.320      0.187      -0.003       0.001
gender[Female]:age[80]:kc2    -0.0006      0.001     -0.612      0.541      -0.002       0.001
gender[Male]:age[80]:kc2      -0.0007      0.001     -0.750      0.453      -0.003       0.001
gender[Female]:age[81]:kc2    -0.0008      0.001     -1.076      0.282      -0.002       0.001
gender[Male]:age[81]:kc2      -0.0009      0.001     -1.148      0.251      -0.002       0.001
gender[Female]:age[82]:kc2    -0.0010      0.001     -1.410      0.159      -0.002       0.000
gender[Male]:age[82]:kc2      -0.0010      0.001     -1.509      0.131      -0.002       0.000
gender[Female]:age[83]:kc2    -0.0009      0.001     -0.946      0.344      -0.003       0.001
gender[Male]:age[83]:kc2      -0.0010      0.001     -1.061      0.289      -0.003       0.001
gender[Female]:age[84]:kc2    -0.0013      0.001     -2.496      0.013      -0.002      -0.000
gender[Male]:age[84]:kc2      -0.0014      0.001     -2.644      0.008      -0.002      -0.000
gender[Female]:age[85]:kc2    -0.0011      0.001     -1.682      0.092      -0.002       0.000
gender[Male]:age[85]:kc2      -0.0013      0.001     -2.072      0.038      -0.003   -7.23e-05
gender[Female]:age[86]:kc2    -0.0002      0.000     -0.455      0.649      -0.001       0.001
gender[Male]:age[86]:kc2      -0.0004      0.000     -0.759      0.448      -0.001       0.001
gender[Female]:age[87]:kc2    -0.0005      0.001     -0.693      0.489      -0.002       0.001
gender[Male]:age[87]:kc2      -0.0007      0.001     -0.870      0.384      -0.002       0.001
gender[Female]:age[88]:kc2    -0.0006      0.000     -1.392      0.164      -0.001       0.000
gender[Male]:age[88]:kc2      -0.0008      0.000     -1.879      0.060      -0.002     3.3e-05
gender[Female]:age[89]:kc2    -0.0012      0.001     -1.975      0.048      -0.002   -8.55e-06
gender[Male]:age[89]:kc2      -0.0012      0.001     -1.923      0.054      -0.003    2.38e-05
gender[Female]:age[90]:kc2     0.0012      0.000      3.528      0.000       0.001       0.002
gender[Male]:age[90]:kc2       0.0011      0.000      3.145      0.002       0.000       0.002
cohort                         0.0008      0.000      2.428      0.015       0.000       0.001
==============================================================================
Skew:                         -0.9362   Kurtosis:                      10.0999
Centered skew:                -1.0282   Centered kurtosis:             11.3636
==============================================================================

=== GEE (AR1) Summary ===
                               GEE Regression Results                              
===================================================================================
Dep. Variable:                           y   No. Observations:                 7280
Model:                                 GEE   No. clusters:                      364
Method:                        Generalized   Min. cluster size:                  20
                      Estimating Equations   Max. cluster size:                  20
Family:                           Gaussian   Mean cluster size:                20.0
Dependence structure:       Autoregressive   Num. iterations:                     2
Date:                     Sun, 26 Oct 2025   Scale:                           0.021
Covariance type:                    robust   Time:                         12:11:22
==============================================================================================
                                 coef    std err          z      P>|z|      [0.025      0.975]
----------------------------------------------------------------------------------------------
Intercept                     58.3123     14.637      3.984      0.000      29.625      86.999
gender[T.Male]                -0.3654      0.852     -0.429      0.668      -2.035       1.304
age[T.1]                     -15.3053     19.817     -0.772      0.440     -54.147      23.536
age[T.2]                     -79.4105     31.675     -2.507      0.012    -141.492     -17.329
age[T.3]                     -44.8112     34.879     -1.285      0.199    -113.173      23.550
age[T.4]                     -47.6717     24.198     -1.970      0.049     -95.099      -0.244
age[T.5]                     -60.9298     23.464     -2.597      0.009    -106.917     -14.942
age[T.6]                     -91.3688     15.059     -6.067      0.000    -120.884     -61.854
age[T.7]                     -85.7203     46.437     -1.846      0.065    -176.736       5.295
age[T.8]                     -74.0425     40.835     -1.813      0.070    -154.077       5.992
age[T.9]                     -42.8422     22.693     -1.888      0.059     -87.319       1.634
age[T.10]                    -61.2170     19.181     -3.192      0.001     -98.812     -23.622
age[T.11]                    -65.5637     32.487     -2.018      0.044    -129.237      -1.890
age[T.12]                    -56.9246     25.900     -2.198      0.028    -107.688      -6.161
age[T.13]                   -116.4971     26.053     -4.472      0.000    -167.559     -65.435
age[T.14]                    -24.8892     15.738     -1.581      0.114     -55.736       5.957
age[T.15]                     29.0142     29.433      0.986      0.324     -28.674      86.703
age[T.16]                    -36.2450     40.450     -0.896      0.370    -115.525      43.035
age[T.17]                   -103.0312     40.622     -2.536      0.011    -182.648     -23.414
age[T.18]                   -180.7356     42.992     -4.204      0.000    -264.999     -96.472
age[T.19]                    -45.4747     15.098     -3.012      0.003     -75.067     -15.882
age[T.20]                     -4.5899     23.517     -0.195      0.845     -50.682      41.502
age[T.21]                     -7.2050     38.326     -0.188      0.851     -82.322      67.912
age[T.22]                    -59.1344     22.212     -2.662      0.008    -102.669     -15.600
age[T.23]                    -62.8027     21.578     -2.911      0.004    -105.094     -20.511
age[T.24]                    -42.0944     45.763     -0.920      0.358    -131.787      47.599
age[T.25]                    -34.6835     39.430     -0.880      0.379    -111.966      42.598
age[T.26]                    -88.0687     18.851     -4.672      0.000    -125.016     -51.122
age[T.27]                      0.6416     53.916      0.012      0.991    -105.033     106.316
age[T.28]                    -86.8923     20.567     -4.225      0.000    -127.203     -46.582
age[T.29]                    -47.6659     31.711     -1.503      0.133    -109.819      14.487
age[T.30]                    -39.2926     33.299     -1.180      0.238    -104.558      25.973
age[T.31]                    -88.8360     38.345     -2.317      0.021    -163.990     -13.682
age[T.32]                    -17.7248     56.722     -0.312      0.755    -128.898      93.448
age[T.33]                    -55.5093     31.001     -1.791      0.073    -116.271       5.252
age[T.34]                    -72.1136     31.739     -2.272      0.023    -134.321      -9.906
age[T.35]                   -114.0350     36.205     -3.150      0.002    -184.995     -43.075
age[T.36]                   -100.7864     29.202     -3.451      0.001    -158.021     -43.551
age[T.37]                    -64.2629     20.809     -3.088      0.002    -105.047     -23.479
age[T.38]                    -82.0683     16.087     -5.102      0.000    -113.597     -50.539
age[T.39]                    -55.1856     21.587     -2.556      0.011     -97.495     -12.876
age[T.40]                   -133.1235     26.369     -5.048      0.000    -184.806     -81.441
age[T.41]                    -66.5672     16.515     -4.031      0.000     -98.935     -34.199
age[T.42]                    -74.0839     17.023     -4.352      0.000    -107.448     -40.719
age[T.43]                    -64.1151     17.606     -3.642      0.000     -98.622     -29.608
age[T.44]                    -71.3612     16.186     -4.409      0.000    -103.086     -39.636
age[T.45]                    -65.3049     18.295     -3.569      0.000    -101.163     -29.447
age[T.46]                    -60.6399     15.784     -3.842      0.000     -91.577     -29.703
age[T.47]                    -62.3344     16.264     -3.833      0.000     -94.211     -30.458
age[T.48]                    -66.0784     15.606     -4.234      0.000     -96.665     -35.492
age[T.49]                    -61.0032     14.858     -4.106      0.000     -90.125     -31.882
age[T.50]                    -64.7840     15.686     -4.130      0.000     -95.529     -34.039
age[T.51]                    -59.1980     14.727     -4.020      0.000     -88.061     -30.335
age[T.52]                    -62.4652     14.710     -4.247      0.000     -91.296     -33.635
age[T.53]                    -58.7570     15.031     -3.909      0.000     -88.217     -29.297
age[T.54]                    -55.7473     15.004     -3.716      0.000     -85.154     -26.341
age[T.55]                    -61.5264     14.892     -4.131      0.000     -90.715     -32.338
age[T.56]                    -53.5967     15.525     -3.452      0.001     -84.025     -23.169
age[T.57]                    -53.8828     15.178     -3.550      0.000     -83.632     -24.134
age[T.58]                    -51.3760     15.414     -3.333      0.001     -81.587     -21.165
age[T.59]                    -48.2441     16.455     -2.932      0.003     -80.495     -15.993
age[T.60]                    -49.5391     15.724     -3.151      0.002     -80.357     -18.721
age[T.61]                    -51.0512     15.982     -3.194      0.001     -82.376     -19.727
age[T.62]                    -50.3143     15.927     -3.159      0.002     -81.530     -19.099
age[T.63]                    -51.0277     15.587     -3.274      0.001     -81.578     -20.478
age[T.64]                    -57.0876     14.960     -3.816      0.000     -86.408     -27.767
age[T.65]                    -53.4074     15.676     -3.407      0.001     -84.132     -22.683
age[T.66]                    -54.9570     14.701     -3.738      0.000     -83.770     -26.144
age[T.67]                    -56.4087     14.919     -3.781      0.000     -85.649     -27.168
age[T.68]                    -56.4655     14.660     -3.852      0.000     -85.198     -27.733
age[T.69]                    -59.5523     14.802     -4.023      0.000     -88.563     -30.541
age[T.70]                    -57.5229     14.707     -3.911      0.000     -86.348     -28.698
age[T.71]                    -60.3229     14.718     -4.098      0.000     -89.170     -31.476
age[T.72]                    -57.2703     14.608     -3.920      0.000     -85.902     -28.638
age[T.73]                    -58.7342     14.719     -3.990      0.000     -87.583     -29.885
age[T.74]                    -57.8876     14.654     -3.950      0.000     -86.609     -29.166
age[T.75]                    -62.6699     14.735     -4.253      0.000     -91.549     -33.791
age[T.76]                    -57.4097     14.677     -3.912      0.000     -86.176     -28.643
age[T.77]                    -58.1630     14.679     -3.962      0.000     -86.933     -29.393
age[T.78]                    -58.9192     14.766     -3.990      0.000     -87.860     -29.979
age[T.79]                    -60.1302     14.795     -4.064      0.000     -89.129     -31.132
age[T.80]                    -59.0952     14.733     -4.011      0.000     -87.971     -30.220
age[T.81]                    -59.4917     14.683     -4.052      0.000     -88.270     -30.713
age[T.82]                    -59.8316     14.664     -4.080      0.000     -88.572     -31.091
age[T.83]                    -59.8228     14.744     -4.057      0.000     -88.721     -30.925
age[T.84]                    -60.6206     14.645     -4.139      0.000     -89.324     -31.917
age[T.85]                    -60.6067     14.662     -4.134      0.000     -89.344     -31.869
age[T.86]                    -58.8759     14.632     -4.024      0.000     -87.554     -30.197
age[T.87]                    -59.5129     14.697     -4.049      0.000     -88.319     -30.706
age[T.88]                    -59.5410     14.618     -4.073      0.000     -88.192     -30.890
age[T.89]                    -60.6971     14.655     -4.142      0.000     -89.421     -31.973
age[T.90]                    -56.5056     14.615     -3.866      0.000     -85.151     -27.860
gender[Female]:age[0]:kc1     -2.6162      0.619     -4.227      0.000      -3.829      -1.403
gender[Male]:age[0]:kc1       -2.5981      0.618     -4.204      0.000      -3.809      -1.387
gender[Female]:age[1]:kc1     -2.1173      0.571     -3.705      0.000      -3.237      -0.997
gender[Male]:age[1]:kc1       -2.0391      0.577     -3.533      0.000      -3.170      -0.908
gender[Female]:age[2]:kc1      0.6650      1.198      0.555      0.579      -1.682       3.012
gender[Male]:age[2]:kc1        0.6627      1.187      0.558      0.577      -1.664       2.990
gender[Female]:age[3]:kc1     -0.7489      1.355     -0.553      0.581      -3.405       1.908
gender[Male]:age[3]:kc1       -0.8506      1.348     -0.631      0.528      -3.493       1.792
gender[Female]:age[4]:kc1     -0.7176      0.824     -0.871      0.384      -2.332       0.897
gender[Male]:age[4]:kc1       -0.6824      0.828     -0.824      0.410      -2.305       0.940
gender[Female]:age[5]:kc1     -0.1112      0.781     -0.143      0.887      -1.641       1.419
gender[Male]:age[5]:kc1       -0.0802      0.786     -0.102      0.919      -1.621       1.461
gender[Female]:age[6]:kc1      1.1793      0.155      7.592      0.000       0.875       1.484
gender[Male]:age[6]:kc1        1.2105      0.159      7.614      0.000       0.899       1.522
gender[Female]:age[7]:kc1      0.9059      1.877      0.483      0.629      -2.772       4.584
gender[Male]:age[7]:kc1        1.0158      1.893      0.536      0.592      -2.695       4.727
gender[Female]:age[8]:kc1      0.4404      1.637      0.269      0.788      -2.768       3.648
gender[Male]:age[8]:kc1        0.4779      1.657      0.288      0.773      -2.770       3.726
gender[Female]:age[9]:kc1     -0.9429      0.764     -1.233      0.217      -2.441       0.555
gender[Male]:age[9]:kc1       -0.8985      0.755     -1.190      0.234      -2.379       0.582
gender[Female]:age[10]:kc1    -0.1553      0.555     -0.280      0.780      -1.243       0.933
gender[Male]:age[10]:kc1      -0.1580      0.530     -0.298      0.766      -1.198       0.882
gender[Female]:age[11]:kc1     0.0222      1.228      0.018      0.986      -2.384       2.428
gender[Male]:age[11]:kc1       0.0131      1.264      0.010      0.992      -2.464       2.490
gender[Female]:age[12]:kc1    -0.3265      0.908     -0.360      0.719      -2.106       1.453
gender[Male]:age[12]:kc1      -0.2459      0.893     -0.275      0.783      -1.995       1.504
gender[Female]:age[13]:kc1     2.1533      0.930      2.315      0.021       0.331       3.976
gender[Male]:age[13]:kc1       2.2050      0.924      2.385      0.017       0.393       4.017
gender[Female]:age[14]:kc1    -1.8026      0.245     -7.360      0.000      -2.283      -1.323
gender[Male]:age[14]:kc1      -1.6881      0.261     -6.465      0.000      -2.200      -1.176
gender[Female]:age[15]:kc1     3.6169      0.963      3.757      0.000       1.730       5.504
gender[Male]:age[15]:kc1       3.5368      0.981      3.604      0.000       1.614       5.460
gender[Female]:age[16]:kc1     1.0811      1.418      0.763      0.446      -1.697       3.860
gender[Male]:age[16]:kc1       1.0264      1.424      0.721      0.471      -1.764       3.817
gender[Female]:age[17]:kc1    -1.4557      1.417     -1.028      0.304      -4.232       1.321
gender[Male]:age[17]:kc1      -1.5245      1.422     -1.072      0.284      -4.312       1.263
gender[Female]:age[18]:kc1    -4.4344      1.513     -2.930      0.003      -7.400      -1.468
gender[Male]:age[18]:kc1      -4.4309      1.525     -2.905      0.004      -7.420      -1.442
gender[Female]:age[19]:kc1     0.7656      0.144      5.304      0.000       0.483       1.048
gender[Male]:age[19]:kc1       0.6451      0.137      4.698      0.000       0.376       0.914
gender[Female]:age[20]:kc1     2.2818      0.697      3.272      0.001       0.915       3.648
gender[Male]:age[20]:kc1       2.2193      0.681      3.259      0.001       0.885       3.554
gender[Female]:age[21]:kc1     2.1905      1.343      1.631      0.103      -0.442       4.823
gender[Male]:age[21]:kc1       2.1267      1.331      1.597      0.110      -0.483       4.736
gender[Female]:age[22]:kc1     0.2310      0.643      0.359      0.719      -1.029       1.491
gender[Male]:age[22]:kc1       0.1544      0.643      0.240      0.810      -1.106       1.415
gender[Female]:age[23]:kc1     0.0442      0.583      0.076      0.940      -1.099       1.188
gender[Male]:age[23]:kc1       0.0229      0.598      0.038      0.969      -1.149       1.195
gender[Female]:age[24]:kc1     0.8151      1.633      0.499      0.618      -2.386       4.016
gender[Male]:age[24]:kc1       0.7987      1.637      0.488      0.626      -2.410       4.008
gender[Female]:age[25]:kc1     1.1206      1.369      0.818      0.413      -1.563       3.804
gender[Male]:age[25]:kc1       1.0612      1.378      0.770      0.441      -1.640       3.763
gender[Female]:age[26]:kc1    -0.9208      0.421     -2.188      0.029      -1.745      -0.096
gender[Male]:age[26]:kc1      -0.9356      0.440     -2.128      0.033      -1.797      -0.074
gender[Female]:age[27]:kc1     2.4647      1.959      1.258      0.208      -1.374       6.304
gender[Male]:age[27]:kc1       2.3948      1.968      1.217      0.224      -1.463       6.253
gender[Female]:age[28]:kc1    -0.8605      0.548     -1.569      0.117      -1.935       0.215
gender[Male]:age[28]:kc1      -0.9275      0.546     -1.698      0.090      -1.998       0.143
gender[Female]:age[29]:kc1     0.6304      1.047      0.602      0.547      -1.423       2.683
gender[Male]:age[29]:kc1       0.5595      1.050      0.533      0.594      -1.499       2.618
gender[Female]:age[30]:kc1     0.9413      1.121      0.840      0.401      -1.256       3.138
gender[Male]:age[30]:kc1       0.8766      1.129      0.776      0.438      -1.337       3.090
gender[Female]:age[31]:kc1    -1.0046      1.335     -0.752      0.452      -3.621       1.612
gender[Male]:age[31]:kc1      -1.0174      1.342     -0.758      0.448      -3.647       1.612
gender[Female]:age[32]:kc1     1.7173      2.067      0.831      0.406      -2.334       5.768
gender[Male]:age[32]:kc1       1.6380      2.066      0.793      0.428      -2.411       5.686
gender[Female]:age[33]:kc1     0.2776      1.036      0.268      0.789      -1.753       2.308
gender[Male]:age[33]:kc1       0.2484      1.020      0.243      0.808      -1.752       2.248
gender[Female]:age[34]:kc1    -0.3066      1.059     -0.290      0.772      -2.382       1.769
gender[Male]:age[34]:kc1      -0.3658      1.065     -0.343      0.731      -2.454       1.722
gender[Female]:age[35]:kc1    -1.9068      1.249     -1.527      0.127      -4.355       0.541
gender[Male]:age[35]:kc1      -1.9816      1.249     -1.587      0.113      -4.429       0.466
gender[Female]:age[36]:kc1    -1.3892      0.969     -1.433      0.152      -3.289       0.510
gender[Male]:age[36]:kc1      -1.5032      0.947     -1.587      0.113      -3.360       0.354
gender[Female]:age[37]:kc1    -0.0503      0.560     -0.090      0.928      -1.148       1.047
gender[Male]:age[37]:kc1      -0.0932      0.561     -0.166      0.868      -1.193       1.007
gender[Female]:age[38]:kc1    -0.7233      0.254     -2.852      0.004      -1.220      -0.226
gender[Male]:age[38]:kc1      -0.7795      0.254     -3.064      0.002      -1.278      -0.281
gender[Female]:age[39]:kc1     0.2636      0.601      0.439      0.661      -0.914       1.441
gender[Male]:age[39]:kc1       0.2328      0.596      0.391      0.696      -0.935       1.401
gender[Female]:age[40]:kc1    -2.6568      0.833     -3.188      0.001      -4.290      -1.024
gender[Male]:age[40]:kc1      -2.7264      0.829     -3.290      0.001      -4.351      -1.102
gender[Female]:age[41]:kc1    -0.0776      0.364     -0.213      0.831      -0.791       0.636
gender[Male]:age[41]:kc1      -0.1730      0.361     -0.480      0.632      -0.880       0.534
gender[Female]:age[42]:kc1    -0.4479      0.410     -1.092      0.275      -1.252       0.356
gender[Male]:age[42]:kc1      -0.5283      0.410     -1.287      0.198      -1.333       0.276
gender[Female]:age[43]:kc1     0.0194      0.468      0.041      0.967      -0.898       0.936
gender[Male]:age[43]:kc1      -0.0687      0.457     -0.151      0.880      -0.964       0.826
gender[Female]:age[44]:kc1    -0.3144      0.330     -0.952      0.341      -0.962       0.333
gender[Male]:age[44]:kc1      -0.4184      0.326     -1.285      0.199      -1.057       0.220
gender[Female]:age[45]:kc1    -0.0491      0.524     -0.094      0.925      -1.075       0.977
gender[Male]:age[45]:kc1      -0.1343      0.512     -0.262      0.793      -1.139       0.870
gender[Female]:age[46]:kc1     0.1746      0.286      0.611      0.541      -0.386       0.735
gender[Male]:age[46]:kc1       0.0902      0.278      0.324      0.746      -0.455       0.635
gender[Female]:age[47]:kc1     0.0863      0.340      0.254      0.800      -0.581       0.754
gender[Male]:age[47]:kc1      -0.0110      0.332     -0.033      0.974      -0.662       0.640
gender[Female]:age[48]:kc1    -0.0921      0.263     -0.350      0.727      -0.609       0.424
gender[Male]:age[48]:kc1      -0.1839      0.256     -0.719      0.472      -0.685       0.318
gender[Female]:age[49]:kc1     0.1406      0.132      1.062      0.288      -0.119       0.400
gender[Male]:age[49]:kc1       0.0522      0.131      0.399      0.690      -0.204       0.308
gender[Female]:age[50]:kc1    -0.0367      0.274     -0.134      0.893      -0.574       0.501
gender[Male]:age[50]:kc1      -0.1334      0.267     -0.501      0.617      -0.656       0.389
gender[Female]:age[51]:kc1     0.2241      0.092      2.443      0.015       0.044       0.404
gender[Male]:age[51]:kc1       0.1319      0.092      1.427      0.154      -0.049       0.313
gender[Female]:age[52]:kc1     0.0772      0.086      0.899      0.369      -0.091       0.246
gender[Male]:age[52]:kc1      -0.0274      0.088     -0.313      0.754      -0.199       0.144
gender[Female]:age[53]:kc1     0.2345      0.167      1.400      0.162      -0.094       0.563
gender[Male]:age[53]:kc1       0.1401      0.171      0.819      0.413      -0.195       0.476
gender[Female]:age[54]:kc1     0.3684      0.162      2.280      0.023       0.052       0.685
gender[Male]:age[54]:kc1       0.2878      0.167      1.725      0.084      -0.039       0.615
gender[Female]:age[55]:kc1     0.0896      0.137      0.653      0.514      -0.179       0.358
gender[Male]:age[55]:kc1      -0.0023      0.142     -0.016      0.987      -0.280       0.276
gender[Female]:age[56]:kc1     0.4606      0.246      1.875      0.061      -0.021       0.942
gender[Male]:age[56]:kc1       0.3737      0.251      1.490      0.136      -0.118       0.865
gender[Female]:age[57]:kc1     0.4336      0.194      2.230      0.026       0.053       0.815
gender[Male]:age[57]:kc1       0.3579      0.196      1.824      0.068      -0.027       0.742
gender[Female]:age[58]:kc1     0.5560      0.231      2.409      0.016       0.104       1.008
gender[Male]:age[58]:kc1       0.4714      0.234      2.017      0.044       0.013       0.929
gender[Female]:age[59]:kc1     0.6840      0.353      1.935      0.053      -0.009       1.377
gender[Male]:age[59]:kc1       0.6061      0.357      1.697      0.090      -0.094       1.306
gender[Female]:age[60]:kc1     0.6252      0.276      2.262      0.024       0.083       1.167
gender[Male]:age[60]:kc1       0.5405      0.272      1.990      0.047       0.008       1.073
gender[Female]:age[61]:kc1     0.5424      0.305      1.778      0.075      -0.056       1.140
gender[Male]:age[61]:kc1       0.4672      0.302      1.546      0.122      -0.125       1.059
gender[Female]:age[62]:kc1     0.5683      0.298      1.907      0.057      -0.016       1.152
gender[Male]:age[62]:kc1       0.4945      0.295      1.676      0.094      -0.084       1.073
gender[Female]:age[63]:kc1     0.5288      0.255      2.077      0.038       0.030       1.028
gender[Male]:age[63]:kc1       0.4559      0.256      1.783      0.075      -0.045       0.957
gender[Female]:age[64]:kc1     0.2344      0.154      1.526      0.127      -0.067       0.536
gender[Male]:age[64]:kc1       0.1667      0.152      1.099      0.272      -0.131       0.464
gender[Female]:age[65]:kc1     0.3947      0.272      1.453      0.146      -0.138       0.927
gender[Male]:age[65]:kc1       0.3336      0.263      1.270      0.204      -0.181       0.848
gender[Female]:age[66]:kc1     0.3132      0.084      3.733      0.000       0.149       0.478
gender[Male]:age[66]:kc1       0.2621      0.081      3.247      0.001       0.104       0.420
gender[Female]:age[67]:kc1     0.2413      0.148      1.632      0.103      -0.049       0.531
gender[Male]:age[67]:kc1       0.1852      0.142      1.305      0.192      -0.093       0.463
gender[Female]:age[68]:kc1     0.2282      0.066      3.442      0.001       0.098       0.358
gender[Male]:age[68]:kc1       0.1776      0.063      2.819      0.005       0.054       0.301
gender[Female]:age[69]:kc1     0.0751      0.117      0.639      0.523      -0.155       0.305
gender[Male]:age[69]:kc1       0.0255      0.114      0.224      0.823      -0.198       0.249
gender[Female]:age[70]:kc1     0.1650      0.086      1.913      0.056      -0.004       0.334
gender[Male]:age[70]:kc1       0.1219      0.084      1.452      0.147      -0.043       0.286
gender[Female]:age[71]:kc1     0.0235      0.087      0.271      0.786      -0.146       0.193
gender[Male]:age[71]:kc1      -0.0164      0.092     -0.179      0.858      -0.196       0.163
gender[Female]:age[72]:kc1     0.1615      0.030      5.420      0.000       0.103       0.220
gender[Male]:age[72]:kc1       0.1277      0.030      4.305      0.000       0.070       0.186
gender[Female]:age[73]:kc1     0.0886      0.091      0.974      0.330      -0.090       0.267
gender[Male]:age[73]:kc1       0.0609      0.088      0.695      0.487      -0.111       0.232
gender[Female]:age[74]:kc1     0.1298      0.063      2.048      0.041       0.006       0.254
gender[Male]:age[74]:kc1       0.1023      0.062      1.663      0.096      -0.018       0.223
gender[Female]:age[75]:kc1    -0.0986      0.096     -1.025      0.305      -0.287       0.090
gender[Male]:age[75]:kc1      -0.1253      0.094     -1.338      0.181      -0.309       0.058
gender[Female]:age[76]:kc1     0.1428      0.074      1.922      0.055      -0.003       0.288
gender[Male]:age[76]:kc1       0.1217      0.071      1.708      0.088      -0.018       0.261
gender[Female]:age[77]:kc1     0.1080      0.075      1.436      0.151      -0.039       0.255
gender[Male]:age[77]:kc1       0.0824      0.072      1.137      0.255      -0.060       0.224
gender[Female]:age[78]:kc1     0.0654      0.107      0.609      0.542      -0.145       0.276
gender[Male]:age[78]:kc1       0.0466      0.103      0.451      0.652      -0.156       0.249
gender[Female]:age[79]:kc1     0.0055      0.115      0.048      0.962      -0.220       0.231
gender[Male]:age[79]:kc1      -0.0144      0.113     -0.127      0.899      -0.237       0.208
gender[Female]:age[80]:kc1     0.0569      0.094      0.606      0.544      -0.127       0.241
gender[Male]:age[80]:kc1       0.0355      0.094      0.378      0.706      -0.149       0.220
gender[Female]:age[81]:kc1     0.0344      0.075      0.457      0.648      -0.113       0.182
gender[Male]:age[81]:kc1       0.0164      0.075      0.219      0.827      -0.131       0.163
gender[Female]:age[82]:kc1     0.0181      0.068      0.267      0.790      -0.115       0.151
gender[Male]:age[82]:kc1       0.0013      0.066      0.019      0.985      -0.128       0.130
gender[Female]:age[83]:kc1     0.0174      0.098      0.178      0.859      -0.174       0.209
gender[Male]:age[83]:kc1      -0.0021      0.099     -0.021      0.983      -0.195       0.191
gender[Female]:age[84]:kc1    -0.0187      0.056     -0.335      0.737      -0.128       0.091
gender[Male]:age[84]:kc1      -0.0405      0.059     -0.692      0.489      -0.155       0.074
gender[Female]:age[85]:kc1    -0.0162      0.067     -0.241      0.810      -0.148       0.116
gender[Male]:age[85]:kc1      -0.0390      0.065     -0.598      0.550      -0.167       0.089
gender[Female]:age[86]:kc1     0.0607      0.050      1.222      0.222      -0.037       0.158
gender[Male]:age[86]:kc1       0.0405      0.049      0.831      0.406      -0.055       0.136
gender[Female]:age[87]:kc1     0.0288      0.080      0.360      0.719      -0.128       0.186
gender[Male]:age[87]:kc1       0.0079      0.083      0.094      0.925      -0.155       0.171
gender[Female]:age[88]:kc1     0.0250      0.039      0.644      0.519      -0.051       0.101
gender[Male]:age[88]:kc1       0.0029      0.039      0.073      0.941      -0.074       0.079
gender[Female]:age[89]:kc1    -0.0302      0.061     -0.496      0.620      -0.149       0.089
gender[Male]:age[89]:kc1      -0.0468      0.065     -0.723      0.470      -0.174       0.080
gender[Female]:age[90]:kc1     0.1653      0.037      4.484      0.000       0.093       0.238
gender[Male]:age[90]:kc1       0.1478      0.037      3.969      0.000       0.075       0.221
gender[Female]:age[0]:kc2      0.0260      0.007      3.995      0.000       0.013       0.039
gender[Male]:age[0]:kc2        0.0259      0.007      3.977      0.000       0.013       0.039
gender[Female]:age[1]:kc2      0.0213      0.006      3.494      0.000       0.009       0.033
gender[Male]:age[1]:kc2        0.0198      0.006      3.189      0.001       0.008       0.032
gender[Female]:age[2]:kc2     -0.0091      0.013     -0.715      0.475      -0.034       0.016
gender[Male]:age[2]:kc2       -0.0088      0.012     -0.709      0.478      -0.033       0.016
gender[Female]:age[3]:kc2      0.0051      0.014      0.355      0.723      -0.023       0.034
gender[Male]:age[3]:kc2        0.0076      0.014      0.531      0.595      -0.020       0.036
gender[Female]:age[4]:kc2      0.0056      0.009      0.643      0.520      -0.012       0.023
gender[Male]:age[4]:kc2        0.0052      0.009      0.590      0.555      -0.012       0.023
gender[Female]:age[5]:kc2     -0.0013      0.008     -0.154      0.877      -0.018       0.015
gender[Male]:age[5]:kc2       -0.0017      0.008     -0.198      0.843      -0.018       0.015
gender[Female]:age[6]:kc2     -0.0149      0.002     -9.362      0.000      -0.018      -0.012
gender[Male]:age[6]:kc2       -0.0153      0.002     -9.022      0.000      -0.019      -0.012
gender[Female]:age[7]:kc2     -0.0117      0.020     -0.586      0.558      -0.051       0.027
gender[Male]:age[7]:kc2       -0.0138      0.020     -0.679      0.497      -0.054       0.026
gender[Female]:age[8]:kc2     -0.0071      0.018     -0.407      0.684      -0.042       0.027
gender[Male]:age[8]:kc2       -0.0076      0.018     -0.424      0.672      -0.043       0.028
gender[Female]:age[9]:kc2      0.0082      0.008      0.969      0.333      -0.008       0.025
gender[Male]:age[9]:kc2        0.0076      0.008      0.920      0.358      -0.009       0.024
gender[Female]:age[10]:kc2    -0.0003      0.006     -0.044      0.965      -0.012       0.012
gender[Male]:age[10]:kc2       0.0001      0.006      0.024      0.981      -0.011       0.011
gender[Female]:age[11]:kc2    -0.0021      0.013     -0.162      0.871      -0.028       0.023
gender[Male]:age[11]:kc2      -0.0016      0.014     -0.118      0.906      -0.029       0.025
gender[Female]:age[12]:kc2     0.0014      0.010      0.149      0.882      -0.017       0.020
gender[Male]:age[12]:kc2    9.769e-05      0.009      0.011      0.992      -0.018       0.018
gender[Female]:age[13]:kc2    -0.0242      0.010     -2.422      0.015      -0.044      -0.005
gender[Male]:age[13]:kc2      -0.0250      0.010     -2.529      0.011      -0.044      -0.006
gender[Female]:age[14]:kc2     0.0185      0.003      7.251      0.000       0.014       0.024
gender[Male]:age[14]:kc2       0.0164      0.003      5.663      0.000       0.011       0.022
gender[Female]:age[15]:kc2     0.0335      0.009      3.702      0.000       0.016       0.051
gender[Male]:age[15]:kc2       0.0323      0.009      3.430      0.001       0.014       0.051
gender[Female]:age[16]:kc2     0.0090      0.013      0.678      0.497      -0.017       0.035
gender[Male]:age[16]:kc2       0.0084      0.013      0.624      0.533      -0.018       0.035
gender[Female]:age[17]:kc2    -0.0150      0.013     -1.135      0.256      -0.041       0.011
gender[Male]:age[17]:kc2      -0.0159      0.013     -1.191      0.234      -0.042       0.010
gender[Female]:age[18]:kc2    -0.0435      0.014     -3.078      0.002      -0.071      -0.016
gender[Male]:age[18]:kc2      -0.0429      0.014     -2.987      0.003      -0.071      -0.015
gender[Female]:age[19]:kc2     0.0064      0.001      4.757      0.000       0.004       0.009
gender[Male]:age[19]:kc2       0.0047      0.001      3.787      0.000       0.002       0.007
gender[Female]:age[20]:kc2     0.0205      0.007      3.107      0.002       0.008       0.033
gender[Male]:age[20]:kc2       0.0199      0.006      3.152      0.002       0.008       0.032
gender[Female]:age[21]:kc2     0.0197      0.013      1.546      0.122      -0.005       0.045
gender[Male]:age[21]:kc2       0.0190      0.013      1.523      0.128      -0.005       0.044
gender[Female]:age[22]:kc2     0.0012      0.006      0.191      0.849      -0.011       0.013
gender[Male]:age[22]:kc2       0.0003      0.006      0.051      0.959      -0.012       0.012
gender[Female]:age[23]:kc2    -0.0010      0.005     -0.192      0.848      -0.012       0.009
gender[Male]:age[23]:kc2      -0.0009      0.006     -0.152      0.879      -0.012       0.010
gender[Female]:age[24]:kc2     0.0062      0.015      0.401      0.688      -0.024       0.036
gender[Male]:age[24]:kc2       0.0064      0.015      0.414      0.679      -0.024       0.037
gender[Female]:age[25]:kc2     0.0093      0.013      0.724      0.469      -0.016       0.034
gender[Male]:age[25]:kc2       0.0087      0.013      0.671      0.502      -0.017       0.034
gender[Female]:age[26]:kc2    -0.0102      0.004     -2.729      0.006      -0.018      -0.003
gender[Male]:age[26]:kc2      -0.0100      0.004     -2.462      0.014      -0.018      -0.002
gender[Female]:age[27]:kc2     0.0220      0.018      1.193      0.233      -0.014       0.058
gender[Male]:age[27]:kc2       0.0213      0.019      1.140      0.254      -0.015       0.058
gender[Female]:age[28]:kc2    -0.0095      0.005     -1.824      0.068      -0.020       0.001
gender[Male]:age[28]:kc2      -0.0102      0.005     -1.986      0.047      -0.020      -0.000
gender[Female]:age[29]:kc2     0.0047      0.010      0.481      0.630      -0.014       0.024
gender[Male]:age[29]:kc2       0.0039      0.010      0.394      0.693      -0.015       0.023
gender[Female]:age[30]:kc2     0.0076      0.010      0.726      0.468      -0.013       0.028
gender[Male]:age[30]:kc2       0.0069      0.011      0.646      0.518      -0.014       0.028
gender[Female]:age[31]:kc2    -0.0114      0.013     -0.910      0.363      -0.036       0.013
gender[Male]:age[31]:kc2      -0.0112      0.013     -0.883      0.377      -0.036       0.014
gender[Female]:age[32]:kc2     0.0146      0.019      0.751      0.452      -0.024       0.053
gender[Male]:age[32]:kc2       0.0136      0.019      0.698      0.485      -0.025       0.052
gender[Female]:age[33]:kc2     0.0010      0.010      0.098      0.922      -0.018       0.020
gender[Male]:age[33]:kc2       0.0009      0.010      0.090      0.928      -0.018       0.019
gender[Female]:age[34]:kc2    -0.0041      0.010     -0.414      0.679      -0.024       0.015
gender[Male]:age[34]:kc2      -0.0048      0.010     -0.478      0.633      -0.025       0.015
gender[Female]:age[35]:kc2    -0.0194      0.012     -1.645      0.100      -0.042       0.004
gender[Male]:age[35]:kc2      -0.0203      0.012     -1.729      0.084      -0.043       0.003
gender[Female]:age[36]:kc2    -0.0143      0.009     -1.537      0.124      -0.032       0.004
gender[Male]:age[36]:kc2      -0.0160      0.009     -1.806      0.071      -0.033       0.001
gender[Female]:age[37]:kc2    -0.0020      0.005     -0.373      0.709      -0.012       0.008
gender[Male]:age[37]:kc2      -0.0024      0.005     -0.448      0.654      -0.013       0.008
gender[Female]:age[38]:kc2    -0.0083      0.002     -3.485      0.000      -0.013      -0.004
gender[Male]:age[38]:kc2      -0.0089      0.002     -3.733      0.000      -0.014      -0.004
gender[Female]:age[39]:kc2     0.0008      0.006      0.140      0.889      -0.010       0.012
gender[Male]:age[39]:kc2       0.0006      0.006      0.112      0.911      -0.010       0.012
gender[Female]:age[40]:kc2    -0.0265      0.008     -3.351      0.001      -0.042      -0.011
gender[Male]:age[40]:kc2      -0.0274      0.008     -3.511      0.000      -0.043      -0.012
gender[Female]:age[41]:kc2    -0.0019      0.004     -0.445      0.656      -0.010       0.006
gender[Male]:age[41]:kc2      -0.0035      0.004     -0.837      0.402      -0.012       0.005
gender[Female]:age[42]:kc2    -0.0064      0.005     -1.331      0.183      -0.016       0.003
gender[Male]:age[42]:kc2      -0.0076      0.005     -1.599      0.110      -0.017       0.002
gender[Female]:age[43]:kc2    -0.0008      0.006     -0.154      0.878      -0.012       0.010
gender[Male]:age[43]:kc2      -0.0023      0.005     -0.434      0.664      -0.013       0.008
gender[Female]:age[44]:kc2    -0.0046      0.004     -1.195      0.232      -0.012       0.003
gender[Male]:age[44]:kc2      -0.0065      0.004     -1.705      0.088      -0.014       0.001
gender[Female]:age[45]:kc2    -0.0017      0.006     -0.271      0.786      -0.014       0.010
gender[Male]:age[45]:kc2      -0.0031      0.006     -0.515      0.606      -0.015       0.009
gender[Female]:age[46]:kc2     0.0011      0.003      0.312      0.755      -0.006       0.008
gender[Male]:age[46]:kc2      -0.0003      0.003     -0.095      0.924      -0.007       0.006
gender[Female]:age[47]:kc2  -2.55e-05      0.004     -0.006      0.995      -0.008       0.008
gender[Male]:age[47]:kc2      -0.0017      0.004     -0.437      0.662      -0.009       0.006
gender[Female]:age[48]:kc2    -0.0021      0.003     -0.670      0.503      -0.008       0.004
gender[Male]:age[48]:kc2      -0.0036      0.003     -1.218      0.223      -0.009       0.002
gender[Female]:age[49]:kc2     0.0006      0.002      0.392      0.695      -0.002       0.004
gender[Male]:age[49]:kc2      -0.0008      0.002     -0.537      0.592      -0.004       0.002
gender[Female]:age[50]:kc2    -0.0014      0.003     -0.433      0.665      -0.008       0.005
gender[Male]:age[50]:kc2      -0.0030      0.003     -0.979      0.327      -0.009       0.003
gender[Female]:age[51]:kc2     0.0017      0.001      1.590      0.112      -0.000       0.004
gender[Male]:age[51]:kc2       0.0002      0.001      0.147      0.883      -0.002       0.002
gender[Female]:age[52]:kc2  7.847e-05      0.001      0.078      0.938      -0.002       0.002
gender[Male]:age[52]:kc2      -0.0017      0.001     -1.655      0.098      -0.004       0.000
gender[Female]:age[53]:kc2     0.0018      0.002      0.916      0.360      -0.002       0.006
gender[Male]:age[53]:kc2       0.0002      0.002      0.107      0.915      -0.004       0.004
gender[Female]:age[54]:kc2     0.0033      0.002      1.757      0.079      -0.000       0.007
gender[Male]:age[54]:kc2       0.0021      0.002      1.054      0.292      -0.002       0.006
gender[Female]:age[55]:kc2  1.711e-06      0.002      0.001      0.999      -0.003       0.003
gender[Male]:age[55]:kc2      -0.0015      0.002     -0.890      0.373      -0.005       0.002
gender[Female]:age[56]:kc2     0.0044      0.003      1.534      0.125      -0.001       0.010
gender[Male]:age[56]:kc2       0.0030      0.003      1.019      0.308      -0.003       0.009
gender[Female]:age[57]:kc2     0.0040      0.002      1.747      0.081      -0.000       0.008
gender[Male]:age[57]:kc2       0.0028      0.002      1.244      0.213      -0.002       0.007
gender[Female]:age[58]:kc2     0.0055      0.003      2.044      0.041       0.000       0.011
gender[Male]:age[58]:kc2       0.0042      0.003      1.532      0.126      -0.001       0.010
gender[Female]:age[59]:kc2     0.0068      0.004      1.663      0.096      -0.001       0.015
gender[Male]:age[59]:kc2       0.0056      0.004      1.358      0.175      -0.003       0.014
gender[Female]:age[60]:kc2     0.0062      0.003      1.913      0.056      -0.000       0.013
gender[Male]:age[60]:kc2       0.0049      0.003      1.553      0.120      -0.001       0.011
gender[Female]:age[61]:kc2     0.0051      0.004      1.450      0.147      -0.002       0.012
gender[Male]:age[61]:kc2       0.0040      0.003      1.158      0.247      -0.003       0.011
gender[Female]:age[62]:kc2     0.0054      0.003      1.551      0.121      -0.001       0.012
gender[Male]:age[62]:kc2       0.0043      0.003      1.278      0.201      -0.002       0.011
gender[Female]:age[63]:kc2     0.0049      0.003      1.662      0.097      -0.001       0.011
gender[Male]:age[63]:kc2       0.0039      0.003      1.304      0.192      -0.002       0.010
gender[Female]:age[64]:kc2     0.0014      0.002      0.787      0.432      -0.002       0.005
gender[Male]:age[64]:kc2       0.0005      0.002      0.266      0.790      -0.003       0.004
gender[Female]:age[65]:kc2     0.0032      0.003      1.003      0.316      -0.003       0.009
gender[Male]:age[65]:kc2       0.0024      0.003      0.787      0.431      -0.004       0.008
gender[Female]:age[66]:kc2     0.0022      0.001      2.247      0.025       0.000       0.004
gender[Male]:age[66]:kc2       0.0016      0.001      1.748      0.080      -0.000       0.003
gender[Female]:age[67]:kc2     0.0014      0.002      0.783      0.434      -0.002       0.005
gender[Male]:age[67]:kc2       0.0007      0.002      0.404      0.686      -0.003       0.004
gender[Female]:age[68]:kc2     0.0011      0.001      1.499      0.134      -0.000       0.003
gender[Male]:age[68]:kc2       0.0006      0.001      0.772      0.440      -0.001       0.002
gender[Female]:age[69]:kc2    -0.0007      0.001     -0.500      0.617      -0.003       0.002
gender[Male]:age[69]:kc2      -0.0012      0.001     -0.940      0.347      -0.004       0.001
gender[Female]:age[70]:kc2     0.0004      0.001      0.364      0.716      -0.002       0.002
gender[Male]:age[70]:kc2   -6.124e-05      0.001     -0.063      0.950      -0.002       0.002
gender[Female]:age[71]:kc2    -0.0013      0.001     -1.334      0.182      -0.003       0.001
gender[Male]:age[71]:kc2      -0.0017      0.001     -1.606      0.108      -0.004       0.000
gender[Female]:age[72]:kc2     0.0003      0.000      0.807      0.420      -0.000       0.001
gender[Male]:age[72]:kc2    3.268e-05      0.000      0.097      0.923      -0.001       0.001
gender[Female]:age[73]:kc2    -0.0006      0.001     -0.527      0.598      -0.003       0.002
gender[Male]:age[73]:kc2      -0.0007      0.001     -0.672      0.501      -0.003       0.001
gender[Female]:age[74]:kc2  5.594e-06      0.001      0.008      0.994      -0.001       0.001
gender[Male]:age[74]:kc2      -0.0001      0.001     -0.169      0.866      -0.002       0.001
gender[Female]:age[75]:kc2    -0.0026      0.001     -2.357      0.018      -0.005      -0.000
gender[Male]:age[75]:kc2      -0.0028      0.001     -2.561      0.010      -0.005      -0.001
gender[Female]:age[76]:kc2     0.0002      0.001      0.214      0.830      -0.002       0.002
gender[Male]:age[76]:kc2       0.0002      0.001      0.218      0.827      -0.001       0.002
gender[Female]:age[77]:kc2    -0.0001      0.001     -0.166      0.868      -0.002       0.002
gender[Male]:age[77]:kc2      -0.0003      0.001     -0.327      0.743      -0.002       0.001
gender[Female]:age[78]:kc2    -0.0007      0.001     -0.522      0.602      -0.003       0.002
gender[Male]:age[78]:kc2      -0.0006      0.001     -0.537      0.591      -0.003       0.002
gender[Female]:age[79]:kc2    -0.0013      0.001     -0.989      0.323      -0.004       0.001
gender[Male]:age[79]:kc2      -0.0014      0.001     -1.025      0.305      -0.004       0.001
gender[Female]:age[80]:kc2    -0.0006      0.001     -0.562      0.574      -0.003       0.002
gender[Male]:age[80]:kc2      -0.0007      0.001     -0.642      0.521      -0.003       0.001
gender[Female]:age[81]:kc2    -0.0009      0.001     -0.982      0.326      -0.003       0.001
gender[Male]:age[81]:kc2      -0.0009      0.001     -1.009      0.313      -0.003       0.001
gender[Female]:age[82]:kc2    -0.0010      0.001     -1.225      0.221      -0.003       0.001
gender[Male]:age[82]:kc2      -0.0010      0.001     -1.269      0.204      -0.002       0.001
gender[Female]:age[83]:kc2    -0.0009      0.001     -0.820      0.412      -0.003       0.001
gender[Male]:age[83]:kc2      -0.0010      0.001     -0.876      0.381      -0.003       0.001
gender[Female]:age[84]:kc2    -0.0013      0.001     -1.962      0.050      -0.003   -1.35e-06
gender[Male]:age[84]:kc2      -0.0014      0.001     -2.050      0.040      -0.003   -6.21e-05
gender[Female]:age[85]:kc2    -0.0011      0.001     -1.448      0.148      -0.003       0.000
gender[Male]:age[85]:kc2      -0.0013      0.001     -1.742      0.082      -0.003       0.000
gender[Female]:age[86]:kc2    -0.0002      0.001     -0.394      0.693      -0.001       0.001
gender[Male]:age[86]:kc2      -0.0004      0.001     -0.633      0.527      -0.001       0.001
gender[Female]:age[87]:kc2    -0.0006      0.001     -0.602      0.547      -0.002       0.001
gender[Male]:age[87]:kc2      -0.0007      0.001     -0.729      0.466      -0.003       0.001
gender[Female]:age[88]:kc2    -0.0006      0.000     -1.271      0.204      -0.001       0.000
gender[Male]:age[88]:kc2      -0.0008      0.000     -1.696      0.090      -0.002       0.000
gender[Female]:age[89]:kc2    -0.0012      0.001     -1.654      0.098      -0.003       0.000
gender[Male]:age[89]:kc2      -0.0012      0.001     -1.616      0.106      -0.003       0.000
gender[Female]:age[90]:kc2     0.0012      0.000      2.731      0.006       0.000       0.002
gender[Male]:age[90]:kc2       0.0011      0.000      2.423      0.015       0.000       0.002
cohort                         0.0008      0.000      2.512      0.012       0.000       0.001
==============================================================================
Skew:                         -0.9376   Kurtosis:                      10.1604
Centered skew:                -1.0186   Centered kurtosis:             11.2234
==============================================================================

Coefficients (Exchangeable):
 Intercept                     61.700139
gender[T.Male]                -0.336273
age[T.1]                     -16.149639
age[T.2]                     -81.610672
age[T.3]                     -45.848179
                                ...    
gender[Female]:age[89]:kc2    -0.001159
gender[Male]:age[89]:kc2      -0.001246
gender[Female]:age[90]:kc2     0.001169
gender[Male]:age[90]:kc2       0.001076
cohort                         0.000786
Length: 457, dtype: float64

Covariance matrix (Exchangeable):
                              Intercept  gender[T.Male]    age[T.1]  \
Intercept                   104.051284       -0.259359 -103.683599   
gender[T.Male]               -0.259359        0.572011    0.562858   
age[T.1]                   -103.683601        0.562858  341.444306   
age[T.2]                   -105.448284        2.646757  103.201352   
age[T.3]                   -102.892747        0.372457  103.200779   
...                                ...             ...         ...   
gender[Female]:age[89]:kc2    0.000030       -0.000135   -0.000151   
gender[Male]:age[89]:kc2     -0.000114        0.000177    0.000154   
gender[Female]:age[90]:kc2    0.000061       -0.000155   -0.000151   
gender[Male]:age[90]:kc2     -0.000080        0.000156    0.000154   
cohort                       -0.000253       -0.000063    0.000095   

                              age[T.2]     age[T.3]    age[T.4]    age[T.5]  \
Intercept                  -105.448280  -102.892746 -104.153345 -103.840081   
gender[T.Male]                2.646757     0.372457   -0.768651    0.221345   
age[T.1]                    103.201350   103.200780  103.201736  103.201449   
age[T.2]                    770.754232   103.201568  103.203725  103.203398   
age[T.3]                    103.201565  1009.620463  103.201683  103.200308   
...                                ...          ...         ...         ...   
gender[Female]:age[89]:kc2   -0.000710    -0.000105    0.000220   -0.000055   
gender[Male]:age[89]:kc2      0.000726     0.000097   -0.000197    0.000065   
gender[Female]:age[90]:kc2   -0.000710    -0.000105    0.000220   -0.000055   
gender[Male]:age[90]:kc2      0.000726     0.000097   -0.000197    0.000065   
cohort                        0.000435    -0.000233    0.000629    0.000249   

                              age[T.6]    age[T.7]    age[T.8]  ...  \
Intercept                  -103.329572 -107.544775 -104.394458  ...   
gender[T.Male]                0.105185    2.829753    2.922701  ...   
age[T.1]                    103.201333  103.202769  103.201356  ...   
age[T.2]                    103.203409  103.206528  103.203950  ...   
age[T.3]                    103.199439  103.203232  103.198482  ...   
...                                ...         ...         ...  ...   
gender[Female]:age[89]:kc2   -0.000028   -0.000742   -0.000795  ...   
gender[Male]:age[89]:kc2      0.000029    0.000792    0.000790  ...   
gender[Female]:age[90]:kc2   -0.000028   -0.000742   -0.000795  ...   
gender[Male]:age[90]:kc2      0.000029    0.000792    0.000790  ...   
cohort                        0.000036    0.001379   -0.000126  ...   

                            gender[Male]:age[86]:kc2  \
Intercept                              -5.709266e-05   
gender[T.Male]                          1.431393e-04   
age[T.1]                                1.543201e-04   
age[T.2]                                7.254876e-04   
age[T.3]                                9.673966e-05   
...                                              ...   
gender[Female]:age[89]:kc2             -3.332284e-08   
gender[Male]:age[89]:kc2                4.494865e-08   
gender[Female]:age[90]:kc2             -3.885277e-08   
gender[Male]:age[90]:kc2                3.894163e-08   
cohort                                 -2.097232e-08   

                            gender[Female]:age[87]:kc2  \
Intercept                                 2.600574e-05   
gender[T.Male]                           -1.213925e-04   
age[T.1]                                 -1.508733e-04   
age[T.2]                                 -7.096839e-04   
age[T.3]                                 -1.051761e-04   
...                                                ...   
gender[Female]:age[89]:kc2                2.801980e-08   
gender[Male]:age[89]:kc2                 -3.843474e-08   
gender[Female]:age[90]:kc2                3.317936e-08   
gender[Male]:age[90]:kc2                 -3.281917e-08   
cohort                                    2.943760e-08   

                            gender[Male]:age[87]:kc2  \
Intercept                              -1.171463e-04   
gender[T.Male]                          1.920325e-04   
age[T.1]                                1.543369e-04   
age[T.2]                                7.255211e-04   
age[T.3]                                9.678993e-05   
...                                              ...   
gender[Female]:age[89]:kc2             -4.627471e-08   
gender[Male]:age[89]:kc2                5.850913e-08   
gender[Female]:age[90]:kc2             -5.180463e-08   
gender[Male]:age[90]:kc2                5.250211e-08   
cohort                                 -4.211809e-09   

                            gender[Female]:age[88]:kc2  \
Intercept                                 7.397461e-05   
gender[T.Male]                           -1.544310e-04   
age[T.1]                                 -1.508881e-04   
age[T.2]                                 -7.097135e-04   
age[T.3]                                 -1.052205e-04   
...                                                ...   
gender[Female]:age[89]:kc2                3.670860e-08   
gender[Male]:age[89]:kc2                 -4.766109e-08   
gender[Female]:age[90]:kc2                4.186816e-08   
gender[Male]:age[90]:kc2                 -4.204552e-08   
cohort                                    1.463402e-08   

                            gender[Male]:age[88]:kc2  \
Intercept                              -6.631661e-05   
gender[T.Male]                          1.554814e-04   
age[T.1]                                1.543216e-04   
age[T.2]                                7.254905e-04   
age[T.3]                                9.674397e-05   
...                                              ...   
gender[Female]:age[89]:kc2             -3.664302e-08   
gender[Male]:age[89]:kc2                4.832101e-08   
gender[Female]:age[90]:kc2             -4.217294e-08   
gender[Male]:age[90]:kc2                4.231399e-08   
cohort                                 -1.953531e-08   

                            gender[Female]:age[89]:kc2  \
Intercept                                 2.961007e-05   
gender[T.Male]                           -1.353997e-04   
age[T.1]                                 -1.508717e-04   
age[T.2]                                 -7.096807e-04   
age[T.3]                                 -1.051713e-04   
...                                                ...   
gender[Female]:age[89]:kc2                3.443083e-07   
gender[Male]:age[89]:kc2                  2.946097e-07   
gender[Female]:age[90]:kc2                3.700612e-08   
gender[Male]:age[90]:kc2                 -3.658783e-08   
cohort                                    3.103767e-08   

                            gender[Male]:age[89]:kc2  \
Intercept                              -1.136586e-04   
gender[T.Male]                          1.771409e-04   
age[T.1]                                1.543387e-04   
age[T.2]                                7.255248e-04   
age[T.3]                                9.679553e-05   
...                                              ...   
gender[Female]:age[89]:kc2              2.946097e-07   
gender[Male]:age[89]:kc2                4.200146e-07   
gender[Female]:age[90]:kc2             -4.773333e-08   
gender[Male]:age[90]:kc2                4.849845e-08   
cohort                                 -2.348689e-09   

                            gender[Female]:age[90]:kc2  \
Intercept                                 6.113494e-05   
gender[T.Male]                           -1.551129e-04   
age[T.1]                                 -1.508819e-04   
age[T.2]                                 -7.097011e-04   
age[T.3]                                 -1.052019e-04   
...                                                ...   
gender[Female]:age[89]:kc2                3.700612e-08   
gender[Male]:age[89]:kc2                 -4.773333e-08   
gender[Female]:age[90]:kc2                1.098202e-07   
gender[Male]:age[90]:kc2                  2.865075e-08   
cohort                                    2.083824e-08   

                            gender[Male]:age[90]:kc2        cohort  
Intercept                              -8.003978e-05 -2.527858e-04  
gender[T.Male]                          1.557069e-04 -6.282677e-05  
age[T.1]                                1.543280e-04  9.479177e-05  
age[T.2]                                7.255033e-04  4.349595e-04  
age[T.3]                                9.676319e-05 -2.327158e-04  
...                                              ...           ...  
gender[Female]:age[89]:kc2             -3.658783e-08  3.103767e-08  
gender[Male]:age[89]:kc2                4.849845e-08 -2.348689e-09  
gender[Female]:age[90]:kc2              2.865075e-08  2.083824e-08  
gender[Male]:age[90]:kc2                1.170313e-07 -1.312877e-08  
cohort                                 -1.312877e-08  1.048762e-07  

[457 rows x 457 columns]

Coefficients (AR1):
 Intercept                     58.312320
gender[T.Male]                -0.365359
age[T.1]                     -15.305257
age[T.2]                     -79.410465
age[T.3]                     -44.811238
                                ...    
gender[Female]:age[89]:kc2    -0.001167
gender[Male]:age[89]:kc2      -0.001246
gender[Female]:age[90]:kc2     0.001173
gender[Male]:age[90]:kc2       0.001066
cohort                         0.000816
Length: 457, dtype: float64

Covariance matrix (AR1):
                              Intercept  gender[T.Male]    age[T.1]  \
Intercept                   214.227678       -0.436678 -213.627372   
gender[T.Male]               -0.436678        0.725280    0.498252   
age[T.1]                   -213.627375        0.498252  392.729641   
age[T.2]                   -215.415921        3.253271  213.093324   
age[T.3]                   -213.297742        0.440793  213.093128   
...                                ...             ...         ...   
gender[Female]:age[89]:kc2    0.000066       -0.000161   -0.000133   
gender[Male]:age[89]:kc2     -0.000174        0.000235    0.000137   
gender[Female]:age[90]:kc2    0.000108       -0.000196   -0.000133   
gender[Male]:age[90]:kc2     -0.000130        0.000199    0.000137   
cohort                       -0.000283       -0.000067    0.000131   

                               age[T.2]     age[T.3]    age[T.4]    age[T.5]  \
Intercept                   -215.415929  -213.297736 -213.989027 -213.821988   
gender[T.Male]                 3.253271     0.440793   -0.675115    0.515844   
age[T.1]                     213.093335   213.093126  213.093831  213.093611   
age[T.2]                    1003.287902   213.093684  213.095150  213.094768   
age[T.3]                     213.093698  1216.543644  213.094409  213.093351   
...                                 ...          ...         ...         ...   
gender[Female]:age[89]:kc2    -0.000878    -0.000120    0.000192   -0.000137   
gender[Male]:age[89]:kc2       0.000888     0.000120   -0.000174    0.000143   
gender[Female]:age[90]:kc2    -0.000878    -0.000120    0.000192   -0.000137   
gender[Male]:age[90]:kc2       0.000888     0.000120   -0.000174    0.000143   
cohort                         0.000319    -0.000007    0.000566    0.000216   

                              age[T.6]    age[T.7]    age[T.8]  ...  \
Intercept                  -213.292367 -217.988935 -214.835694  ...   
gender[T.Male]                0.169357    3.019779    3.322223  ...   
age[T.1]                    213.093580  213.095206  213.093822  ...   
age[T.2]                    213.094763  213.098077  213.095366  ...   
age[T.3]                    213.092856  213.097343  213.092790  ...   
...                                ...         ...         ...  ...   
gender[Female]:age[89]:kc2   -0.000045   -0.000795   -0.000901  ...   
gender[Male]:age[89]:kc2      0.000047    0.000844    0.000902  ...   
gender[Female]:age[90]:kc2   -0.000045   -0.000796   -0.000901  ...   
gender[Male]:age[90]:kc2      0.000047    0.000843    0.000902  ...   
cohort                        0.000052    0.001553    0.000037  ...   

                            gender[Male]:age[86]:kc2  \
Intercept                              -1.017279e-04   
gender[T.Male]                          1.804423e-04   
age[T.1]                                1.372239e-04   
age[T.2]                                8.877683e-04   
age[T.3]                                1.194917e-04   
...                                              ...   
gender[Female]:age[89]:kc2             -3.920958e-08   
gender[Male]:age[89]:kc2                5.941576e-08   
gender[Female]:age[90]:kc2             -4.869914e-08   
gender[Male]:age[90]:kc2                4.944304e-08   
cohort                                 -2.277855e-08   

                            gender[Female]:age[87]:kc2  \
Intercept                                 6.620168e-05   
gender[T.Male]                           -1.537291e-04   
age[T.1]                                 -1.331858e-04   
age[T.2]                                 -8.779185e-04   
age[T.3]                                 -1.196960e-04   
...                                                ...   
gender[Female]:age[89]:kc2                3.252469e-08   
gender[Male]:age[89]:kc2                 -5.158691e-08   
gender[Female]:age[90]:kc2                4.166627e-08   
gender[Male]:age[90]:kc2                 -4.197476e-08   
cohort                                    3.172312e-08   

                            gender[Male]:age[87]:kc2  \
Intercept                              -1.731066e-04   
gender[T.Male]                          2.430929e-04   
age[T.1]                                1.372423e-04   
age[T.2]                                8.878050e-04   
age[T.3]                                1.195468e-04   
...                                              ...   
gender[Female]:age[89]:kc2             -5.592855e-08   
gender[Male]:age[89]:kc2                7.670061e-08   
gender[Female]:age[90]:kc2             -6.541811e-08   
gender[Male]:age[90]:kc2                6.672789e-08   
cohort                                 -4.411214e-09   

                            gender[Female]:age[88]:kc2  \
Intercept                                 1.220221e-04   
gender[T.Male]                           -1.935061e-04   
age[T.1]                                 -1.332023e-04   
age[T.2]                                 -8.779514e-04   
age[T.3]                                 -1.197454e-04   
...                                                ...   
gender[Female]:age[89]:kc2                4.306541e-08   
gender[Male]:age[89]:kc2                 -6.263528e-08   
gender[Female]:age[90]:kc2                5.220699e-08   
gender[Male]:age[90]:kc2                 -5.302314e-08   
cohort                                    1.524578e-08   

                            gender[Male]:age[88]:kc2  \
Intercept                              -1.146969e-04   
gender[T.Male]                          1.998992e-04   
age[T.1]                                1.372254e-04   
age[T.2]                                8.877713e-04   
age[T.3]                                1.194962e-04   
...                                              ...   
gender[Female]:age[89]:kc2             -4.446683e-08   
gender[Male]:age[89]:kc2                6.471880e-08   
gender[Female]:age[90]:kc2             -5.395640e-08   
gender[Male]:age[90]:kc2                5.474608e-08   
cohort                                 -2.129253e-08   

                            gender[Female]:age[89]:kc2  \
Intercept                                 6.570866e-05   
gender[T.Male]                           -1.613937e-04   
age[T.1]                                 -1.331839e-04   
age[T.2]                                 -8.779145e-04   
age[T.3]                                 -1.196900e-04   
...                                                ...   
gender[Female]:age[89]:kc2                4.977405e-07   
gender[Male]:age[89]:kc2                  4.364160e-07   
gender[Female]:age[90]:kc2                4.377682e-08   
gender[Male]:age[90]:kc2                 -4.402420e-08   
cohort                                    3.370659e-08   

                            gender[Male]:age[89]:kc2  \
Intercept                              -1.736227e-04   
gender[T.Male]                          2.347681e-04   
age[T.1]                                1.372445e-04   
age[T.2]                                8.878093e-04   
age[T.3]                                1.195533e-04   
...                                              ...   
gender[Female]:age[89]:kc2              4.364160e-07   
gender[Male]:age[89]:kc2                5.942395e-07   
gender[Female]:age[90]:kc2             -6.312591e-08   
gender[Male]:age[90]:kc2                6.450179e-08   
cohort                                 -2.265779e-09   

                            gender[Female]:age[90]:kc2  \
Intercept                                 1.075024e-04   
gender[T.Male]                           -1.957208e-04   
age[T.1]                                 -1.331953e-04   
age[T.2]                                 -8.779373e-04   
age[T.3]                                 -1.197241e-04   
...                                                ...   
gender[Female]:age[89]:kc2                4.377682e-08   
gender[Male]:age[89]:kc2                 -6.312591e-08   
gender[Female]:age[90]:kc2                1.845089e-07   
gender[Male]:age[90]:kc2                  8.151059e-08   
cohort                                    2.241195e-08   

                            gender[Male]:age[90]:kc2        cohort  
Intercept                              -1.300589e-04 -2.832796e-04  
gender[T.Male]                          1.986838e-04 -6.717833e-05  
age[T.1]                                1.372326e-04  1.308838e-04  
age[T.2]                                8.877858e-04  3.193338e-04  
age[T.3]                                1.195180e-04 -7.181366e-06  
...                                              ...           ...  
gender[Female]:age[89]:kc2             -4.402420e-08  3.370659e-08  
gender[Male]:age[89]:kc2                6.450179e-08 -2.265779e-09  
gender[Female]:age[90]:kc2              8.151058e-08  2.241195e-08  
gender[Male]:age[90]:kc2                1.934184e-07 -1.396921e-08  
cohort                                 -1.396921e-08  1.056503e-07  

[457 rows x 457 columns]

9. QIC (approximate)¶

In [21]:
def QIC(model):
    """
    QIC approximation for Gaussian GEE (scaled)
    """
    mu = model.fittedvalues
    y  = model.model.endog
    resid = y - mu

    
    phi = model.scale

    # quasi-likelihood under independence
    quasi_lik = -0.5 * np.sum((resid ** 2) / phi)

    
    Vi = model.cov_robust      
    Vm = model.cov_params()    

    # ensure both are numpy arrays
    Vi = np.asarray(Vi)
    Vm = np.asarray(Vm)

    trace_term = np.trace(np.linalg.solve(Vm, Vi))

    return -2 * quasi_lik + 2 * trace_term


qic_ex  = QIC(geeEx)
qic_ar1 = QIC(geeAr1)

print(f"QIC (Exchangeable): {qic_ex:.2f}")
print(f"QIC (AR1): {qic_ar1:.2f}")
QIC (Exchangeable): 13158.52
QIC (AR1): 13159.25

10. Forecast PC1 via ARIMA(0,1,0) w/ drift and Build Test Set¶

In [22]:
# Rebuild kc0 compactly (single vector of three blocks from (1,3))
kc_compact = []
for i in [0, 2]:
    m1 = M_blocks[i].to_numpy()
    m2 = M_blocks[i+1].to_numpy()
    kc_part1 = pca_no_center_scale(np.hstack((m1[:, 0:15],  m2[:, 0:15])))
    kc_part2 = pca_no_center_scale(np.hstack((m1[:, 15:41], m2[:, 15:41])))
    kc_part3 = pca_no_center_scale(np.hstack((m1[:, 41:91], m2[:, 41:91])))
    kc_compact.extend([*kc_part1, *kc_part2, *kc_part3])
kc0 = np.array(kc_compact)

# Random walk + drift forecast for each of the 6 chunks (length 20 → forecast 11)
ar = []
for i in range(6):
    sub = kc0[i*20:(i+1)*20]
    model = ARIMA(sub, order=(0,1,0), trend="t")
    fit = model.fit()
    fc = fit.forecast(steps=11)
    ar.extend(fc)

# Combine forecast blocks into repeated patterns across ages and groups
kc_list = []
indices = np.arange(0, len(ar), 33)
for i in indices:
    ar1 = ar[i:i+11]
    ar2 = ar[i+11:i+22]
    ar3 = ar[i+22:i+33]
    result = np.tile(
        np.concatenate([np.tile(ar1, 15), np.tile(ar2, 26), np.tile(ar3, 50)]),
        2
    )
    kc_list.append(result)

kc1_f = np.concatenate(kc_list)
kc2_f = kc1_f**2

print("kc1_f length:", len(kc1_f))
print("kc2_f length:", len(kc2_f))

# Combine observed first 20 and forecast next 11 for a quick plot
kc1_train_20 = ASDRs["kc1"].values[:20]
kc1_forecast_11 = kc1_f[:11]
kc_combined = np.concatenate([kc1_train_20, kc1_forecast_11])

plt.figure(figsize=(8,4))
plt.plot(range(1, len(kc_combined)+1), kc_combined, marker="o")
plt.axvline(20, color="red", linestyle="--", label="Forecast start")
plt.title("Observed (1–20) and Forecasted (21–31) kc1")
plt.xlabel("Time index")
plt.ylabel("kc1 value")
plt.legend()
plt.grid(True)
plt.show()

print("ASDRs kc1[1:20]:")
print(kc1_train_20)
print("\nkc0[1:20]:")
print(kc0[:20])

# Build test frame for 2011–2021
t_test = 11
gender = (["Female"] * (91 * t_test) + ["Male"] * (91 * t_test)) * 2
country = ["AUT"] * (2 * 91 * t_test) + ["CZE"] * (2 * 91 * t_test)
year = np.tile(np.arange(2011, 2011 + t_test), 4 * 91)
age_levels = np.arange(0, 91)
age = np.tile(np.repeat(np.arange(0, 91), t_test), 4)
cohort = year - age

# Response variable from MB0 rows 21–31 
y_test = M0.iloc[20:31, :].to_numpy().ravel(order="F")

newASDRs = pd.DataFrame({
    "kc1": kc1_f,
    "kc2": kc2_f,
    "cohort": cohort,
    "y": y_test,
    "age": age,
    "gender": gender,
    "Country": country,
    "year": year
})

newASDRs["age"] = pd.Categorical(newASDRs["age"], categories=age_levels, ordered=True)
newASDRs["gender"] = pd.Categorical(newASDRs["gender"], categories=["Female", "Male"])
newASDRs["Country"] = pd.Categorical(newASDRs["Country"], categories=["AUT", "CZE"])
newASDRs["year"] = pd.Categorical(newASDRs["year"], categories=np.arange(2011, 2022), ordered=True)

newASDRs["subject"] = (
    newASDRs["Country"].astype(str) + "_" + newASDRs["gender"].astype(str) + "_" + newASDRs["age"].astype(str)
)

print(newASDRs.info())
display(newASDRs.head())
kc1_f length: 4004
kc2_f length: 4004
No description has been provided for this image
ASDRs kc1[1:20]:
[46.02697874 46.31293695 45.28994691 46.00825074 46.73129272 46.91256749
 46.9803026  47.15754359 47.41160418 47.34850454 48.19512633 48.99646992
 48.48800451 48.07626729 48.15545539 48.78330713 49.68757755 49.90787305
 48.78115134 49.91141693]

kc0[1:20]:
[46.02697874 46.31293695 45.28994691 46.00825074 46.73129272 46.91256749
 46.9803026  47.15754359 47.41160418 47.34850454 48.19512633 48.99646992
 48.48800451 48.07626729 48.15545539 48.78330713 49.68757755 49.90787305
 48.78115134 49.91141693]
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 4004 entries, 0 to 4003
Data columns (total 9 columns):
 #   Column   Non-Null Count  Dtype   
---  ------   --------------  -----   
 0   kc1      4004 non-null   float64 
 1   kc2      4004 non-null   float64 
 2   cohort   4004 non-null   int64   
 3   y        4004 non-null   float64 
 4   age      4004 non-null   category
 5   gender   4004 non-null   category
 6   Country  4004 non-null   category
 7   year     4004 non-null   category
 8   subject  4004 non-null   object  
dtypes: category(4), float64(3), int64(1), object(1)
memory usage: 175.6+ KB
None
kc1 kc2 cohort y age gender Country year subject
0 50.115856 2511.599030 2011 -5.891180 0 Female AUT 2011 AUT_Female_0
1 50.320295 2532.132112 2012 -5.719324 0 Female AUT 2012 AUT_Female_0
2 50.524734 2552.748784 2013 -5.922384 0 Female AUT 2013 AUT_Female_0
3 50.729174 2573.449047 2014 -5.778350 0 Female AUT 2014 AUT_Female_0
4 50.933613 2594.232900 2015 -5.843578 0 Female AUT 2015 AUT_Female_0

11. Predict Test Set with GEE(AR1) and Plot Observed vs Predicted¶

In [23]:
newASDRs["pred"] = geeAr1.predict(newASDRs)
display(newASDRs[["y", "pred"]].head())

plt.figure(figsize=(7,4))
plt.scatter(newASDRs["y"], newASDRs["pred"], alpha=0.6)
lo = min(newASDRs["y"].min(), newASDRs["pred"].min())
hi = max(newASDRs["y"].max(), newASDRs["pred"].max())
plt.plot([lo, hi], [lo, hi], color="red", linestyle="--", label="Perfect fit")
plt.xlabel("Observed y")
plt.ylabel("Predicted y")
plt.title("Observed vs Predicted (GEE AR1)")
plt.legend()
plt.tight_layout()
plt.show()
y pred
0 -5.891180 -5.791370
1 -5.719324 -5.791000
2 -5.922384 -5.788455
3 -5.778350 -5.783734
4 -5.843578 -5.776838
No description has been provided for this image

12. Test-set MSE by Country × Gender¶

In [24]:
M0_blocks = [dat.iloc[:, i*91:(i+1)*91] for i in range(4)]
MSE_test_gee_pca = []

for n in range(4):
    start = n * (11 * 91)
    end   = (n + 1) * (11 * 91)

    gee_pred = np.exp(np.array(newASDRs["pred"].iloc[start:end]).reshape(11, 91, order="F"))
    actual   = np.exp(M0_blocks[n].iloc[20:31, :].to_numpy())  # rows 21–31
    err = actual - gee_pred
    MSE_test_gee_pca.append(np.sum(err**2) / (91 * 11))

print("MSE_test_gee_pca:", MSE_test_gee_pca)

group_labels = ["AUT_Female", "AUT_Male", "CZE_Female", "CZE_Male"]
mse_table = pd.DataFrame({"Group": group_labels, "MSE_Test_GEE_PCA": MSE_test_gee_pca})
display(mse_table)

best_idx = mse_table["MSE_Test_GEE_PCA"].idxmin()
best_group = mse_table.loc[best_idx, "Group"]
best_val = mse_table.loc[best_idx, "MSE_Test_GEE_PCA"]
print(f"Lowest MSE → {best_group} ({best_val:.7f})")

sns.set_theme(style="whitegrid")
plt.figure(figsize=(7,4))
sns.barplot(x="Group", y="MSE_Test_GEE_PCA", data=mse_table)
plt.title("Test-set MSE by Country × Gender (GEE PCA)")
plt.ylabel("Mean Squared Error")
plt.xlabel("")
plt.xticks(rotation=30)
plt.tight_layout()
plt.show()
MSE_test_gee_pca: [np.float64(5.2094674142569386e-06), np.float64(9.812791288944782e-06), np.float64(1.2683016210362278e-05), np.float64(3.614005543425049e-05)]
Group MSE_Test_GEE_PCA
0 AUT_Female 0.000005
1 AUT_Male 0.000010
2 CZE_Female 0.000013
3 CZE_Male 0.000036
Lowest MSE → AUT_Female (0.0000052)
No description has been provided for this image